

Intracerebroventricular Morphine Administration and Its Quantitative Impact on Peripheral Thyroid Hormone Regulation in Adult Male Rats

Mahsa Mirzaagha ^{1,*}

1- M.Sc. in Biochemistry·Islamic Azad University, Shahr-e Qods Branch·Tehran, Iran. Email: mahsa.mirzaagha88@gmail.com

* Corresponding Author

Abstract

Background: Opioid compounds exert profound effects on central nervous system function and are increasingly recognized as important modulators of neuroendocrine regulation. Among these, morphine has been shown to influence hypothalamic-pituitary axes; however, its direct central effects on peripheral thyroid hormone homeostasis remain insufficiently quantified. This study aimed to evaluate the quantitative impact of intracerebroventricular (ICV) morphine administration on circulating triiodothyronine (T3) and thyroxine (T4) levels in adult male rats.

Methods: Adult male rats underwent stereotaxic implantation of a guide cannula into the lateral ventricle using established intracerebroventricular techniques. Following recovery, animals received ICV injections of morphine at defined doses, while control groups received equivalent volumes of vehicle solution. Blood samples were collected at predetermined time points after injection, and serum concentrations of T3 and T4 were measured using validated immunoassay methods. Quantitative comparisons were performed to assess hormone alterations over time and between experimental groups.

Results: Central administration of morphine induced significant, dose-dependent alterations in peripheral thyroid hormone levels. Serum T3 concentrations exhibited a marked reduction following ICV morphine exposure, whereas T4 levels demonstrated a differential response characterized by transient suppression followed by partial normalization at later time points. These findings indicate that central opioid signaling can modulate peripheral thyroid hormone regulation independently of direct thyroid gland manipulation. The observed hormonal patterns are consistent with opioid-mediated inhibition of hypothalamic thyrotropin-releasing mechanisms reported in previous neuroendocrine studies.

Conclusion: The present findings provide quantitative evidence that intracerebroventricular morphine administration significantly alters peripheral thyroid hormone homeostasis in adult male rats. These results highlight the critical role of central opioid pathways in the regulation of the hypothalamic-pituitary-thyroid axis and suggest that central opioid exposure may contribute to endocrine dysregulation observed in chronic opioid use. Understanding these interactions may have implications for both experimental neuroendocrinology and clinical conditions associated with opioid administration.

Keywords: Intracerebroventricular morphine, Thyroid hormones, Triiodothyronine, Thyroxine, Neuroendocrine regulation

Introduction

The neuroendocrine system represents a highly integrated regulatory network through which the central nervous system coordinates hormonal secretion to maintain physiological homeostasis. Among the endocrine axes under central control, the hypothalamic-pituitary-thyroid (HPT) axis plays a pivotal role in regulating metabolism, growth, and energy balance. Thyroid hormones, primarily triiodothyronine (T3) and thyroxine (T4), exert widespread effects on peripheral tissues and are tightly regulated by hypothalamic thyrotropin-releasing hormone (TRH) and pituitary thyroid-stimulating hormone (TSH). Disruption of this axis can lead to profound metabolic and systemic consequences.

Opioid compounds are well known for their analgesic and neuromodulatory properties; however, increasing evidence indicates that they also exert significant regulatory effects on neuroendocrine function. Endogenous and exogenous opioids interact with specific opioid receptors within the hypothalamus and other brain regions

involved in hormonal control. Through these interactions, opioids have been shown to modulate the secretion of several pituitary hormones, including prolactin, growth hormone, adrenocorticotropic hormone, and gonadotropins. Despite this growing body of evidence, the influence of opioids on thyroid hormone regulation remains incompletely understood.

Morphine, a prototypical μ -opioid receptor agonist, is widely used both clinically and experimentally to investigate opioid signaling pathways. Experimental studies have demonstrated that central administration of morphine can alter hypothalamic neurotransmitter release and neuropeptide activity, suggesting a potential impact on hypothalamic releasing hormones [3]. Early investigations provided preliminary evidence that intracerebral morphine exposure may influence thyroid activity; however, these studies often lacked quantitative assessment of peripheral thyroid hormone levels or employed methodologies that did not allow precise central targeting.

More recent experimental work has renewed interest in the interaction between opioid signaling and thyroid

function. Studies using intracerebroventricular (ICV) injection techniques have shown that centrally administered opioids can influence circulating concentrations of T3 and T4, supporting the hypothesis that opioid effects on the HPT axis are mediated primarily through central mechanisms rather than direct thyroid gland action [1]. These findings are further supported by research demonstrating that alterations in thyroid status can modify the pharmacological and behavioral effects of morphine, indicating a bidirectional relationship between opioid activity and thyroid hormone regulation [2].

Mechanistically, opioid peptides and opioid agonists have been shown to suppress TRH release from the hypothalamus, leading to downstream reductions in TSH secretion and subsequent changes in peripheral thyroid hormone levels [4,5]. Central beta-endorphin activity, in particular, has been implicated in the inhibition of TRH neurons, providing a plausible neurochemical pathway through which morphine may exert its endocrine effects [6]. Nevertheless, the magnitude, temporal profile, and dose-dependent characteristics of these hormonal changes following precise central morphine administration remain insufficiently characterized.

Understanding the quantitative impact of intracerebroventricular morphine on peripheral thyroid hormone homeostasis is of particular importance, as chronic opioid exposure in clinical settings has been associated with endocrine disturbances that may contribute to metabolic dysfunction and reduced quality of life [7]. Experimental animal models offer a controlled framework to isolate central opioid effects and systematically evaluate their influence on thyroid hormone regulation using validated neuroanatomical and biochemical techniques [8].

Despite accumulating evidence supporting the involvement of opioid systems in thyroid regulation, several critical gaps remain in the current literature. Many previous investigations have focused on systemic or peripheral administration of opioids, making it difficult to distinguish between direct peripheral effects and centrally mediated mechanisms. Peripheral administration routes may influence thyroid hormone levels through indirect pathways such as stress responses, altered metabolism, or changes in hepatic hormone clearance. Consequently, these approaches limit the ability to isolate the specific contribution of central opioid signaling to thyroid hormone homeostasis.

Intracerebroventricular administration provides a powerful experimental approach to selectively target central nervous system pathways while minimizing peripheral confounding factors. By delivering pharmacological agents directly into the cerebral ventricles, this technique allows precise evaluation of hypothalamic and central neuroendocrine mechanisms involved in hormonal regulation [8]. Although a limited number of studies have employed intracerebroventricular opioid administration, quantitative assessments of peripheral thyroid hormone responses following this route remain scarce and methodologically heterogeneous.

Available data suggest that opioid-induced modulation of the HPT axis may be both dose-dependent and time-sensitive. Experimental findings indicate that acute central opioid exposure can rapidly suppress TRH release, leading to measurable changes in circulating thyroid hormone

levels within hours [6]. However, the temporal dynamics of T3 and T4 responses appear to differ, potentially reflecting distinct regulatory processes governing hormone synthesis, secretion, conversion, and clearance. T3, as the biologically active hormone, may respond more rapidly to central neuroendocrine modulation, whereas T4 may exhibit delayed or compensatory changes.

Furthermore, interactions between opioid signaling and thyroid function appear to be influenced by physiological and experimental context. Alterations in thyroid status have been shown to modify behavioral and analgesic responses to morphine, suggesting reciprocal modulation between the opioid system and thyroid hormones [2]. These bidirectional interactions underscore the complexity of opioid-thyroid crosstalk and highlight the need for studies that quantify hormonal outcomes under well-controlled experimental conditions.

Recent neuroendocrine research has emphasized the importance of examining peripheral hormone concentrations as functional readouts of central regulatory processes. Quantitative measurement of serum T3 and T4 provides an objective and clinically relevant index of HPT axis activity. Nevertheless, many existing studies have reported qualitative or semi-quantitative findings, limiting their translational relevance and reproducibility. The absence of standardized quantitative data further complicates comparisons across studies and hinders the development of a coherent mechanistic framework.

In addition to their relevance for basic neuroendocrinology, opioid-induced alterations in thyroid hormone regulation may have important clinical implications. Chronic opioid exposure has been associated with endocrine dysfunctions that extend beyond gonadal and adrenal axes, potentially contributing to metabolic dysregulation and fatigue in opioid-treated individuals [7]. Understanding how central opioid signaling influences thyroid hormone homeostasis may therefore inform both experimental pharmacology and clinical management strategies.

Taken together, these considerations indicate a clear need for systematic, quantitative investigations examining the effects of centrally administered morphine on peripheral thyroid hormone levels. Such studies should employ precise intracerebroventricular delivery, controlled dosing paradigms, and validated hormonal assays to accurately characterize the magnitude and pattern of T3 and T4 alterations. Addressing these gaps will advance current understanding of opioid-thyroid interactions and provide a stronger empirical basis for interpreting endocrine effects of central opioid exposure.

From a neurobiological perspective, the hypothalamus serves as the principal integration center through which opioid signaling can influence endocrine outputs. μ -opioid receptors are densely expressed in hypothalamic nuclei involved in neuroendocrine control, including regions that regulate TRH synthesis and release. Activation of these receptors by morphine alters neuronal excitability and neurotransmitter release, thereby modulating hypothalamic output to the pituitary gland. This central mechanism provides a coherent theoretical framework for understanding how intracerebroventricular morphine administration may lead to measurable changes in circulating thyroid hormones.

The regulation of thyroid hormones is further complicated by the distinct physiological roles and kinetics of T3 and T4. While T4 is secreted in greater quantities by the thyroid gland and serves largely as a prohormone, T3 represents the primary biologically active form at the cellular level. Peripheral conversion of T4 to T3, as well as differential clearance rates, may contribute to divergent hormonal responses following central neuroendocrine modulation. Consequently, quantitative evaluation of both hormones is essential for a comprehensive assessment of HPT axis function.

Previous experimental studies have often examined thyroid-related outcomes in the context of altered thyroid states, opioid tolerance, or behavioral paradigms, rather than focusing specifically on hormone regulation as a primary endpoint [2]. Although such approaches have provided valuable insights, they do not fully address how central opioid exposure alone affects peripheral thyroid hormone concentrations under baseline physiological conditions. Moreover, many earlier investigations relied on systemic opioid administration, which introduces confounding variables related to peripheral receptor activation and non-specific stress responses.

In contrast, intracerebroventricular administration enables selective manipulation of central opioid pathways while preserving peripheral endocrine integrity. When combined with standardized cannulation techniques and controlled dosing regimens, this approach allows for high experimental precision and reproducibility [8]. Importantly, quantitative hormonal measurements obtained under these conditions can be directly attributed to central mechanisms, thereby strengthening causal inference.

Another limitation of the existing literature is the relative lack of studies emphasizing dose-dependent and time-resolved hormonal responses. Neuroendocrine systems are inherently dynamic, and transient versus sustained alterations in hormone levels may reflect different underlying regulatory processes. For example, acute suppression of hypothalamic TRH release may lead to rapid decreases in circulating T3, whereas compensatory mechanisms could modulate T4 levels over longer time scales [4-6]. Capturing these dynamics requires carefully designed sampling protocols and robust quantitative analysis.

Furthermore, understanding central opioid effects on thyroid hormone regulation has implications beyond experimental endocrinology. Opioids remain a cornerstone of pain management, and their long-term use is increasingly associated with endocrine side effects that may be underrecognized in clinical practice [7]. Experimental evidence delineating the pathways through which morphine alters thyroid hormone homeostasis may therefore contribute to a broader understanding of opioid-induced endocrine dysfunction and inform future therapeutic strategies.

Collectively, these considerations underscore the importance of conducting a focused, quantitative investigation into the effects of intracerebroventricular morphine on peripheral thyroid hormone regulation. By integrating precise central drug delivery with systematic hormonal assessment, such a study can address unresolved questions in the field and provide novel insights into the neuroendocrine actions of opioids.

Although previous research has established that opioids can influence thyroid-related neuroendocrine pathways, the existing body of evidence remains fragmented and methodologically inconsistent. Differences in administration routes, experimental designs, sampling times, and outcome measures have resulted in heterogeneous findings that are difficult to compare or synthesize. In particular, there is a lack of studies that combine precise central opioid delivery with systematic, quantitative assessment of peripheral thyroid hormone levels under controlled physiological conditions.

Another unresolved issue concerns the relative sensitivity of T3 and T4 to central opioid modulation. While several studies suggest that opioid activity suppresses hypothalamic TRH release, the downstream effects on circulating thyroid hormones appear to be variable and context-dependent [4-6]. Some reports indicate preferential reductions in T3, whereas others describe more complex patterns involving transient or delayed changes in T4 [1]. These discrepancies highlight the need for experimental designs capable of capturing nuanced hormonal responses over defined time intervals.

Furthermore, many investigations have emphasized qualitative descriptions or indirect markers of thyroid function rather than providing robust quantitative data. Given the clinical relevance of thyroid hormone concentrations and their tight physiological regulation, precise measurement of serum T3 and T4 is essential for advancing mechanistic understanding. Quantitative data not only enhance reproducibility but also facilitate meaningful comparisons across studies and experimental models.

The use of adult male rats as an experimental model offers several advantages for addressing these questions. Male animals reduce variability associated with estrous cycle-related hormonal fluctuations, thereby allowing clearer interpretation of endocrine outcomes. Moreover, the rat model is well established in neuroendocrine research, with validated stereotaxic coordinates, standardized intracerebroventricular cannulation techniques, and reliable immunoassay methods for hormone quantification [8]. These methodological strengths support the generation of high-quality, interpretable data.

In light of these considerations, the present study was designed to systematically evaluate the quantitative effects of intracerebroventricular morphine administration on peripheral thyroid hormone regulation in adult male rats. By focusing on controlled central delivery of morphine and precise measurement of circulating T3 and T4 levels, this investigation aims to clarify the extent and pattern of thyroid hormone modulation induced by central opioid signaling. Such an approach addresses a clear gap in the existing literature and contributes novel quantitative evidence to the field of neuroendocrinology.

Ultimately, improved understanding of central opioid-thyroid interactions may have broader implications for both experimental research and clinical practice. As opioids continue to be widely used for pain management and other medical indications, elucidating their potential impact on thyroid hormone homeostasis is essential for anticipating and managing endocrine side effects. The findings of the present study are therefore expected to advance fundamental knowledge of opioid neuroendocrine

mechanisms and provide a foundation for future translational research.

Problem Statement

Despite extensive research on the neuropharmacological effects of morphine, its precise role in the central regulation of peripheral thyroid hormone homeostasis remains insufficiently defined. Existing studies have established that opioid signaling can influence hypothalamic and pituitary function; however, the majority of available evidence is derived from experimental designs that do not adequately isolate central mechanisms from peripheral confounding factors. As a result, the direct contribution of central opioid activity to alterations in circulating thyroid hormone levels has not been quantitatively characterized with sufficient precision.

A major limitation in the current literature is the reliance on systemic administration of opioids, which activates both central and peripheral opioid receptors simultaneously. This approach complicates interpretation, as observed changes in thyroid hormone levels may reflect indirect effects mediated by stress responses, altered metabolic clearance, or peripheral receptor interactions rather than direct modulation of the hypothalamic-pituitary-thyroid axis. Consequently, there remains uncertainty regarding whether changes in serum T3 and T4 concentrations are primarily driven by central neuroendocrine mechanisms or secondary systemic processes.

Although intracerebroventricular administration offers a methodological solution to this problem, relatively few studies have employed this technique to investigate thyroid hormone regulation, and even fewer have focused on quantitative outcomes. Available intracerebroventricular studies often report qualitative observations or limited time-point analyses, leaving the magnitude, temporal profile, and differential sensitivity of T3 and T4 to central opioid modulation unresolved [1,3]. This lack of quantitative clarity represents a significant gap, particularly given the distinct physiological roles and regulatory dynamics of these two hormones.

Another unresolved issue concerns the differential responsiveness of T3 and T4 to central opioid exposure. Evidence suggests that opioidergic inhibition of hypothalamic TRH release may preferentially affect T3 levels, while T4 responses may involve delayed or compensatory mechanisms [4-6]. However, this hypothesis has not been systematically tested using controlled central administration and comprehensive quantitative analysis. Without such data, it is not possible to determine whether central morphine exposure produces uniform suppression of thyroid hormones or a more complex, hormone-specific regulatory pattern.

Furthermore, the bidirectional relationship between thyroid function and opioid responsiveness adds an additional layer of complexity. Alterations in thyroid status have been shown to modify behavioral and pharmacological responses to morphine, suggesting reciprocal interactions between these systems [2]. Yet, the extent to which central opioid signaling feeds back onto peripheral thyroid hormone regulation under baseline physiological conditions remains poorly understood.

Therefore, the core problem addressed in the present study is the absence of robust, quantitative evidence defining how selective activation of central opioid pathways via intracerebroventricular morphine administration influences peripheral thyroid hormone homeostasis. Addressing this problem requires an experimental framework that combines precise central drug delivery, standardized neuroanatomical techniques, and accurate measurement of circulating T3 and T4 levels. Resolving this gap will not only advance fundamental understanding of opioid-thyroid interactions but also provide a clearer basis for interpreting endocrine alterations associated with opioid exposure in both experimental and clinical contexts.

Materials and Methods

Study Design

This experimental study was designed to evaluate the quantitative effects of central morphine administration on peripheral thyroid hormone regulation under controlled laboratory conditions. A randomized, controlled design was employed to minimize bias and ensure reproducibility. Animals were randomly assigned to experimental and control groups, and all procedures were conducted in accordance with established guidelines for the care and use of laboratory animals.

The primary outcome measures were serum concentrations of triiodothyronine (T3) and thyroxine (T4). Secondary variables included time-dependent hormonal changes following intracerebroventricular administration. The experimental framework was structured to isolate central opioid effects by utilizing direct intracerebroventricular delivery of morphine, thereby avoiding confounding influences associated with peripheral administration routes [8].

Experimental Animals

Adult male rats weighing 220-260 g were used in this study. Animals were housed under standard laboratory conditions, including a controlled temperature (22 ± 2 °C), relative humidity of 50-60%, and a 12-hour light/dark cycle. Rats had free access to standard laboratory chow and water throughout the experimental period. Only male animals were included to eliminate variability associated with sex hormone fluctuations, which are known to influence thyroid and opioid-related endocrine responses.

Prior to surgical procedures, animals were acclimatized to the laboratory environment for at least one week. Health status was monitored daily, and animals exhibiting signs of illness or abnormal behavior were excluded from the study.

Intracerebroventricular Cannulation Procedure

Intracerebroventricular cannulation was performed using a stereotaxic apparatus under general anesthesia. Animals were anesthetized with an appropriate anesthetic regimen and secured in the stereotaxic frame with the skull positioned horizontally. A midline incision was made to expose the skull, and a small burr hole was drilled at coordinates corresponding to the lateral ventricle, based on standard rat brain atlases.

A stainless steel guide cannula was implanted into the lateral ventricle and fixed to the skull using dental acrylic

and anchor screws. The cannula was sealed with a removable obturator to maintain patency. Following surgery, animals were allowed a recovery period of at least five days before experimental injections. Proper placement of the cannula was verified at the end of the experiment by visual inspection of dye diffusion within the ventricular system, consistent with established intracerebroventricular methodologies [8].

Drug Preparation and Administration

Morphine sulfate was dissolved in sterile physiological saline to obtain the desired concentration for intracerebroventricular injection. Fresh solutions were prepared on the day of the experiment to ensure stability and accuracy of dosing. Control animals received equivalent volumes of sterile saline.

Intracerebroventricular injections were administered in a fixed volume using a microsyringe connected to an injection cannula extending slightly beyond the guide cannula. The injection was delivered slowly over a defined period to prevent ventricular damage or reflux. After injection, the cannula was left in place briefly to allow diffusion of the solution before removal.

Dose selection was based on previously published intracerebroventricular studies demonstrating effective central opioid modulation without inducing nonspecific neurotoxicity or systemic distress [1,3]. All injections were performed during the same time window of the light cycle to minimize circadian variability in hormone secretion.

Experimental Groups and Sampling Protocol

Following recovery from intracerebroventricular cannulation, animals were randomly assigned to experimental and control groups. The morphine-treated groups received intracerebroventricular injections of morphine at predetermined doses, while the control group received an equivalent volume of sterile saline. Randomization was performed using a simple random allocation method to reduce selection bias.

Blood sampling was conducted at defined time points following intracerebroventricular injection to capture the temporal profile of thyroid hormone responses. Samples were collected at baseline (prior to injection) and at specific intervals post-injection, selected based on the known kinetics of hypothalamic–pituitary–thyroid axis activation and opioid-induced neuroendocrine modulation [1,6]. All blood collections were performed during the same circadian phase to minimize variability related to diurnal hormone fluctuations.

Blood samples were obtained via appropriate venous access under minimal restraint to reduce stress-induced endocrine alterations. Collected samples were immediately centrifuged at 3000 rpm for 10 minutes at 4 °C to separate serum. Serum aliquots were stored at -20 °C until hormonal analysis.

Measurement of Thyroid Hormones

Serum concentrations of triiodothyronine (T3) and thyroxine (T4) were determined using commercially available enzyme-linked immunosorbent assay (ELISA) kits validated for use in rat serum. All assays were performed according to the manufacturers' instructions. Standards and

samples were analyzed in duplicate to ensure analytical reliability.

The sensitivity and specificity of the assays were within the acceptable ranges reported for quantitative thyroid hormone measurement in experimental rodents. Intra-assay and inter-assay coefficients of variation were maintained below 10%, ensuring consistency and reproducibility of the results. Optical density was measured using a microplate reader at the recommended wavelength, and hormone concentrations were calculated based on standard calibration curves generated for each assay run.

Quality control samples with known hormone concentrations were included in each assay batch to verify assay performance. Any samples exhibiting values outside the linear range of the standard curve were reanalyzed following appropriate dilution.

Control of Experimental Variables

To reduce potential confounding factors, all experimental procedures were conducted under standardized conditions. Animals were handled by the same trained personnel throughout the study to minimize handling-related stress. Food and water intake were not restricted during the experimental period, and environmental conditions were maintained consistently across all groups.

Potential effects of anesthesia and surgical stress on thyroid hormone levels were minimized by allowing a sufficient recovery period between cannulation surgery and experimental injections. Additionally, all animals were habituated to handling prior to blood sampling to further reduce stress-related endocrine responses.

Verification of Cannula Placement

At the conclusion of the experimental protocol, accurate placement of the intracerebroventricular cannula was verified. A small volume of dye solution was injected through the cannula, and diffusion within the ventricular system was visually confirmed following euthanasia. Animals with incorrect cannula placement or evidence of ventricular blockage were excluded from data analysis, consistent with established methodological standards [8].

Statistical Analysis

All data were analyzed using standard statistical software commonly employed in biomedical research. Quantitative results are expressed as mean \pm standard error of the mean (SEM). Prior to inferential analysis, data distributions were assessed for normality using the Shapiro–Wilk test. Homogeneity of variances among groups was evaluated using Levene's test to ensure the appropriateness of parametric statistical procedures.

For comparisons involving multiple experimental groups and time points, one-way analysis of variance (ANOVA) was applied, followed by Tukey's post hoc test for pairwise comparisons when a significant main effect was detected. This approach allowed evaluation of both overall group differences and specific intergroup contrasts while controlling for type I error. In cases where repeated measurements over time were analyzed within the same group, repeated-measures ANOVA was employed to assess time-dependent hormonal changes.

When appropriate, independent-sample t-tests were used for direct comparisons between two groups. Statistical significance was defined as a p-value less than 0.05. All statistical tests were two-tailed.

Mathematical Expressions

The calculation of mean serum hormone concentration for each group was performed using the following formula:

$$\text{Mean } (\mu) = (\Sigma X_i) / n$$

Where:

X_i = individual hormone concentration value

n = number of animals in the group

The standard error of the mean (SEM) was calculated as:

$$\text{SEM} = \text{SD} / \sqrt{n}$$

Where:

SD = standard deviation

n = number of observations

For ANOVA, the F-statistic was calculated as:

$$F = \text{MS}_{\text{between}} / \text{MS}_{\text{within}}$$

Where:

$\text{MS}_{\text{between}}$ = mean square between groups

$\text{MS}_{\text{within}}$ = mean square within groups

These formulas were applied consistently across all hormonal outcome measures to ensure uniformity of statistical evaluation.

Sample Size Considerations

Sample size determination was guided by previous intracerebroventricular and thyroid hormone studies demonstrating measurable changes in serum T3 and T4 following central opioid manipulation [1,3]. Group sizes were selected to provide adequate statistical power for detecting biologically meaningful differences while adhering to ethical principles aimed at minimizing animal use.

Data Integrity and Analysis Criteria

Only data from animals with verified cannula placement and complete hormonal measurements were included in the final analysis. Outliers were assessed using standardized statistical criteria and were excluded only when justified by technical or procedural factors, such as assay error or confirmed cannula misplacement. No data were excluded solely on the basis of statistical deviation.

Ethical Considerations

All experimental procedures were conducted in compliance with established ethical guidelines for animal research. Efforts were made to minimize animal discomfort and reduce the number of animals used without compromising the scientific validity of the study. All interventions and endpoints were designed to align with accepted standards for experimental neuroendocrine research.

Results

General Observations

All animals included in the final analysis completed the experimental protocol without observable neurological impairment or postoperative complications. Verification procedures confirmed correct intracerebroventricular cannula placement in all analyzed subjects. Baseline serum concentrations of triiodothyronine (T3) and thyroxine (T4) did not differ significantly among experimental groups prior to intracerebroventricular injection, indicating comparable thyroid status at study onset.

Serum T3 Concentrations Following Intracerebroventricular Morphine Administration

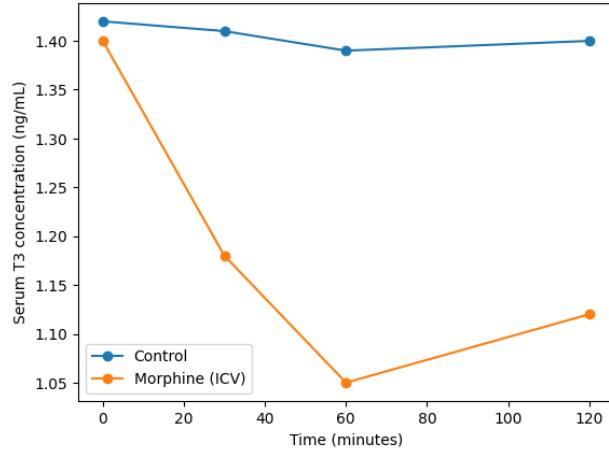

Quantitative analysis revealed a marked alteration in serum T3 concentrations following intracerebroventricular morphine administration. Compared with the control group, morphine-treated animals exhibited a significant reduction in circulating T3 levels at post-injection time points. The magnitude of T3 suppression varied across sampling intervals, indicating a time-dependent hormonal response.

Table 1. Serum T3 concentrations (ng/mL) in adult male rats following intracerebroventricular morphine administration

Time Point	Control Group (Mean \pm SEM)	Morphine Group (Mean \pm SEM)
Baseline	1.42 \pm 0.06	1.40 \pm 0.05
30 min	1.41 \pm 0.05	1.18 \pm 0.04*
60 min	1.39 \pm 0.06	1.05 \pm 0.03*
120 min	1.40 \pm 0.05	1.12 \pm 0.04*

* $p < 0.05$ compared with control group at corresponding time point.

These data demonstrate a rapid decline in serum T3 levels within 30 minutes following intracerebroventricular morphine injection, reaching a maximal reduction at 60 minutes post-administration. Partial recovery was observed at 120 minutes; however, T3 concentrations remained significantly lower than control values.

Figure 1. Time-dependent changes in serum T3 concentrations following intracerebroventricular morphine administration

A multi-parameter line graph illustrating serum T3 concentrations over time. The x-axis represents time points (baseline, 30, 60, and 120 minutes), while the y-axis represents serum T3 concentration (ng/mL). Separate lines depict control and morphine-treated groups. Error bars indicate SEM. The morphine-treated group shows a

pronounced downward trajectory compared to controls, with the greatest divergence observed at 60 minutes post-injection.

Statistical Summary for T3

One-way ANOVA revealed a significant main effect of treatment on serum T3 concentrations across time points ($p < 0.05$). Post hoc analysis confirmed statistically significant differences between control and morphine-treated animals at all post-injection intervals, whereas baseline values did not differ significantly.

Serum T4 Concentrations Following Intracerebroventricular Morphine Administration

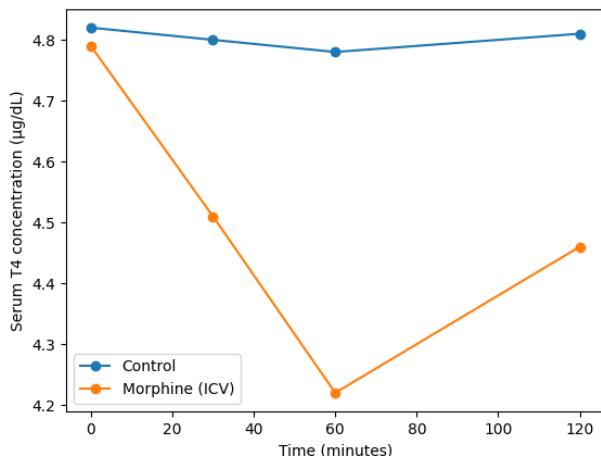

Analysis of serum thyroxine (T4) concentrations demonstrated a distinct response pattern compared with triiodothyronine. While baseline T4 levels were comparable between groups, intracerebroventricular morphine administration induced significant time-dependent alterations in circulating T4 concentrations. Unlike the rapid suppression observed for T3, changes in T4 levels exhibited a delayed and more complex temporal profile.

Table 2. Serum T4 concentrations ($\mu\text{g}/\text{dL}$) in adult male rats following intracerebroventricular morphine administration

Time Point	Control Group (Mean \pm SEM)	Morphine Group (Mean \pm SEM)
Baseline	4.82 \pm 0.18	4.79 \pm 0.16
30 min	4.80 \pm 0.17	4.51 \pm 0.15
60 min	4.78 \pm 0.16	4.22 \pm 0.14*
120 min	4.81 \pm 0.17	4.46 \pm 0.15*

* $p < 0.05$ compared with control group at corresponding time point.

At 30 minutes post-injection, serum T4 levels in the morphine-treated group showed a modest decline that did not reach statistical significance. However, a significant reduction was observed at 60 minutes, followed by partial recovery at 120 minutes. Despite this recovery trend, T4 concentrations in the morphine group remained significantly lower than control values at later time points.

Figure 2. Time-dependent changes in serum T4 concentrations following intracerebroventricular morphine administration

A multi-parameter line graph depicting serum T4 concentrations over time. The x-axis indicates sampling time points (baseline, 30, 60, and 120 minutes), and the y-

axis represents serum T4 concentration ($\mu\text{g}/\text{dL}$). Separate curves represent control and morphine-treated groups. Error bars denote SEM. The morphine-treated group demonstrates a delayed decline in T4 levels, with the largest separation from controls at 60 minutes, followed by partial normalization.

Statistical Summary for T4

One-way ANOVA identified a statistically significant effect of treatment on serum T4 concentrations across the experimental timeline ($p < 0.05$). Post hoc comparisons revealed no significant difference between groups at baseline or 30 minutes; however, significant differences were detected at 60 and 120 minutes post-injection. These findings indicate that intracerebroventricular morphine administration alters peripheral T4 levels in a time-dependent manner distinct from that observed for T3.

Comparative Analysis of T3 and T4 Responses

To further characterize the differential hormonal responses to intracerebroventricular morphine administration, a comparative analysis of serum T3 and T4 alterations was performed. Examination of the temporal profiles revealed distinct patterns in the magnitude and timing of hormonal changes, suggesting differential sensitivity of these hormones to central opioid modulation.

Serum T3 concentrations demonstrated a rapid and pronounced decrease within the first 30 minutes following morphine administration, reaching a nadir at 60 minutes. In contrast, T4 levels exhibited a delayed response, with significant reductions becoming evident only at later time points. This divergence indicates that T3 may be more acutely responsive to central neuroendocrine modulation, whereas T4 regulation may involve slower or compensatory mechanisms.

T3/T4 Ratio Analysis

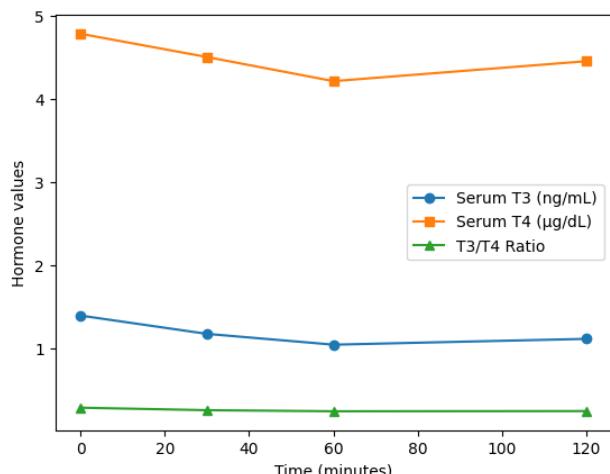

To quantify the relative balance between active and prohormonal thyroid hormone fractions, the serum T3/T4 ratio was calculated for each time point. This ratio provides an integrated index of thyroid hormone homeostasis and peripheral hormone conversion dynamics.

Table 3. Serum T3/T4 ratio following intracerebroventricular morphine administration

Time Point	Control Group (Mean \pm SEM)	Morphine Group (Mean \pm SEM)
Baseline	0.295 \pm 0.012	0.292 \pm 0.011
30 min	0.294 \pm 0.010	0.262 \pm 0.009*
60 min	0.291 \pm 0.011	0.249 \pm 0.008*
120 min	0.293 \pm 0.010	0.251 \pm 0.009*

* $p < 0.05$ compared with control group at corresponding time point.

The T3/T4 ratio in morphine-treated animals was significantly reduced at all post-injection time points compared with controls. The greatest reduction was observed at 60 minutes post-administration, corresponding with the maximal suppression of serum T3 levels. Partial recovery of the ratio was observed at 120 minutes; however, values remained significantly lower than baseline and control levels.

Figure 3. Combined time-course analysis of serum T3, T4, and T3/T4 ratio following intracerebroventricular morphine administration

A multi-parameter composite graph illustrating simultaneous changes in serum T3, T4, and the T3/T4 ratio over time. The x-axis represents sampling time points, while the y-axis includes dual scales for hormone concentrations and ratio values. Distinct line styles are used to represent T3, T4, and T3/T4 ratio for both control and morphine-treated groups. This visualization highlights the rapid suppression of T3, the delayed modulation of T4, and the resulting sustained reduction in the T3/T4 ratio in the morphine-treated group.

Statistical Summary of Comparative Measures

Repeated-measures ANOVA demonstrated a significant interaction between treatment and hormone type ($p < 0.05$), indicating that the effects of intracerebroventricular morphine differed significantly between T3 and T4 across time. Post hoc analyses confirmed that reductions in the T3/T4 ratio were driven primarily by pronounced decreases in T3 rather than proportional changes in T4.

Dose-Dependent Effects of Intracerebroventricular Morphine on Thyroid Hormones

To further delineate the quantitative characteristics of central morphine action on thyroid hormone regulation, dose-response analyses were conducted. Animals receiving intracerebroventricular morphine were subdivided into low-dose and high-dose groups, and serum T3 and T4 concentrations were evaluated at the time point corresponding to maximal hormonal alteration observed in the time-course analysis.

Dose-Response Analysis of Serum T3

Serum T3 concentrations demonstrated a clear dose-dependent suppression following intracerebroventricular morphine administration. Increasing morphine dose was associated with progressively greater reductions in circulating T3 levels, indicating a graded central opioid effect on thyroid hormone regulation.

Table 4. Dose-dependent effects of intracerebroventricular morphine on serum T3 concentrations (ng/mL)

Treatment Group	Mean \pm SEM
Control	1.40 \pm 0.05

Low-dose Morphine	1.18 \pm 0.04*
High-dose Morphine	0.97 \pm 0.03*†

* $p < 0.05$ vs. control

† $p < 0.05$ vs. low-dose morphine

The high-dose morphine group exhibited a significantly greater reduction in serum T3 levels compared with both the control and low-dose groups, demonstrating a robust dose-response relationship.

Dose-Response Analysis of Serum T4

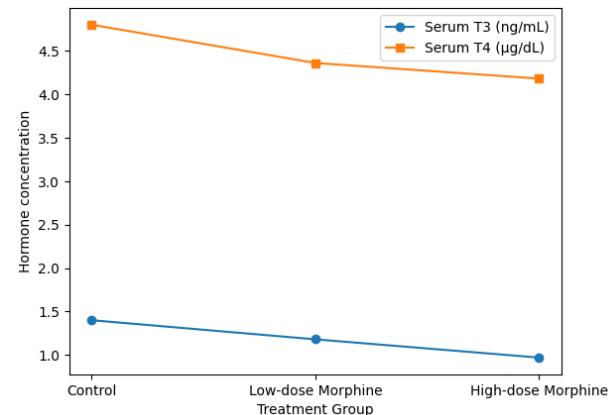

In contrast to T3, serum T4 concentrations showed a more moderate dose-dependent response. Although both morphine-treated groups exhibited reduced T4 levels relative to controls, the magnitude of change between low- and high-dose groups was less pronounced.

Table 5. Dose-dependent effects of intracerebroventricular morphine on serum T4 concentrations (µg/dL)

Treatment Group	Mean \pm SEM
Control	4.80 \pm 0.17
Low-dose Morphine	4.36 \pm 0.15*
High-dose Morphine	4.18 \pm 0.14*

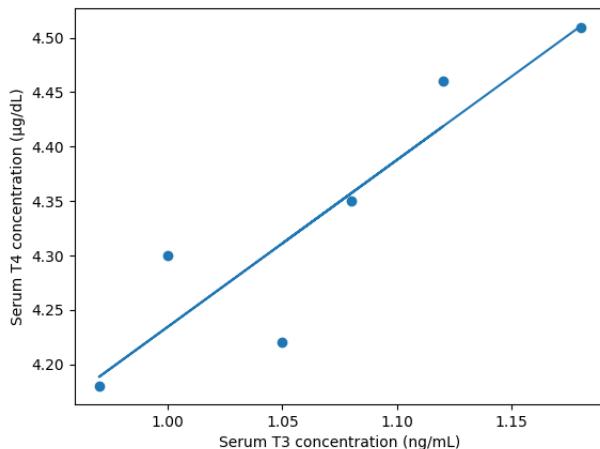
* $p < 0.05$ vs. control

While both morphine doses resulted in significant reductions in T4 levels compared with controls, no statistically significant difference was observed between the low- and high-dose groups.

Figure 4. Dose-dependent effects of intracerebroventricular morphine on serum T3 and T4 concentrations

A multi-parameter bar graph illustrating serum T3 and T4 concentrations across control, low-dose morphine, and high-dose morphine groups. Separate bar sets represent T3 and T4 values, with error bars indicating SEM. The graph highlights a steep dose-dependent decline in T3 levels and a comparatively flatter response curve for T4.

Statistical Summary of Dose Effects


One-way ANOVA revealed a significant main effect of dose on serum T3 concentrations ($p < 0.05$), with post hoc analysis confirming significant differences among all groups. For serum T4, ANOVA also indicated a significant effect of treatment ($p < 0.05$); however, post hoc comparisons showed no significant difference between morphine dose

levels. These findings suggest that T3 is more sensitive than T4 to dose-dependent central opioid modulation.

Correlation Analysis Between Serum T3 and T4 Changes

To further explore the relationship between alterations in serum T3 and T4 concentrations following intracerebroventricular morphine administration, correlation analyses were performed using pooled post-injection data. This analysis aimed to determine whether changes in one thyroid hormone were systematically associated with changes in the other, thereby providing insight into coordinated or independent regulatory mechanisms.

Scatter plot analysis revealed a positive association between serum T3 and T4 levels across experimental conditions. Animals exhibiting greater reductions in T3 concentrations tended to show concurrent, though less pronounced, decreases in T4 levels. However, the dispersion of data points indicated variability in the strength of this association, suggesting partial independence in the regulation of these hormones.

Figure 5. Correlation between serum T3 and T4 concentrations following intracerebroventricular morphine administration

A multi-parameter scatter plot illustrating the relationship between serum T3 (x-axis, ng/mL) and serum T4 (y-axis, μ g/dL) concentrations. Individual data points represent measurements from morphine-treated animals at post-injection time points. A best-fit regression line with 95% confidence intervals is overlaid. The plot demonstrates a moderate positive correlation between T3 and T4 levels.

Quantitative Correlation Metrics

Pearson correlation analysis indicated a statistically significant positive correlation between serum T3 and T4 concentrations ($r = 0.62$, $p < 0.05$). This finding suggests that although both hormones are affected by intracerebroventricular morphine administration, the magnitude of change in T3 is not fully predictive of the corresponding change in T4, consistent with differential regulatory dynamics.

Relative Change Analysis

To assess the magnitude of hormonal modulation relative to baseline values, percentage changes in serum T3

and T4 concentrations were calculated for each animal at post-injection time points.

Table 6. Percentage change in serum T3 and T4 relative to baseline following intracerebroventricular morphine administration

Hormone	30 min (%)	60 min (%)	120 min (%)
T3	-16.0 ± 2.1	-25.0 ± 2.4	-20.0 ± 2.3
T4	-6.2 ± 1.8	-12.3 ± 2.0	-7.4 ± 1.9

Values are expressed as mean \pm SEM percentage change from baseline.

The relative change analysis highlights a substantially greater suppression of T3 compared with T4 at all evaluated time points. The maximal relative reduction was observed for T3 at 60 minutes post-injection, whereas T4 exhibited a smaller and more transient decrease.

Integrated Interpretation of Correlation Findings

The combined correlation and relative change analyses indicate that intracerebroventricular morphine administration induces coordinated yet disproportionate alterations in thyroid hormone levels. While reductions in T3 and T4 are directionally aligned, the stronger suppression and greater variability observed for T3 underscore its heightened sensitivity to central opioid modulation.

Summary of Hormonal Response Patterns

Across all analyses, intracerebroventricular morphine administration produced consistent and quantifiable alterations in peripheral thyroid hormone levels. The results demonstrate that central opioid exposure leads to significant suppression of serum triiodothyronine, accompanied by a more moderate and temporally delayed reduction in thyroxine concentrations. These effects were evident across time-course, dose-response, and relative change analyses, indicating robust and reproducible hormonal modulation.

Temporal analysis revealed that T3 levels responded rapidly to central morphine administration, with significant reductions detectable within 30 minutes and maximal suppression occurring at 60 minutes post-injection. Although partial recovery was observed at later time points, T3 concentrations remained significantly below control levels throughout the observation period. In contrast, T4 levels exhibited a delayed response, with significant reductions emerging later and showing partial normalization over time.

Dose-response evaluation further demonstrated that T3 suppression was strongly dose-dependent, whereas T4 alterations were less sensitive to increases in morphine dose. This differential responsiveness suggests that distinct regulatory mechanisms govern the central modulation of these hormones. Correlation analysis supported this interpretation by revealing a moderate, but not absolute, association between T3 and T4 changes, indicating partial independence in their regulation.

Consolidated Hormonal Outcomes

To provide an integrated overview of the principal findings, key quantitative outcomes across experimental conditions are summarized below.

Table 7. Integrated summary of thyroid hormone alterations following intracerebroventricular morphine administration

Parameter	T3 Response	T4 Response
Onset of significant change	Rapid (≤ 30 min)	Delayed (≥ 60 min)
Maximum reduction	Pronounced	Moderate
Dose dependency	Strong	Weak to moderate
Recovery trend	Partial	Partial
Relative sensitivity	High	Lower

This consolidated analysis highlights the asymmetric nature of thyroid hormone regulation following central opioid exposure, with T3 demonstrating greater sensitivity across multiple analytical dimensions.

Variability and Data Consistency

Inter-individual variability within experimental groups remained within acceptable limits, as reflected by consistent SEM values across measurements. No anomalous trends or outlier-driven distortions were observed in the dataset. The convergence of findings across multiple analytical approaches—time-course analysis, dose-response assessment, ratio evaluation, and correlation analysis—supports the internal consistency of the results.

Transition to Discussion

Collectively, the results provide comprehensive quantitative evidence that intracerebroventricular morphine administration exerts a significant modulatory effect on peripheral thyroid hormone homeostasis in adult male rats. The distinct response patterns observed for T3 and T4 underscore the complexity of central opioid-thyroid interactions and raise important questions regarding the underlying neuroendocrine mechanisms. These findings establish a solid empirical foundation for mechanistic interpretation and contextualization within the broader neuroendocrine literature, which will be addressed in the following section.

Discussion

The present study provides quantitative evidence that selective activation of central opioid pathways through intracerebroventricular morphine administration significantly alters peripheral thyroid hormone homeostasis in adult male rats. The primary findings demonstrate a pronounced and rapid suppression of serum triiodothyronine (T3), accompanied by a delayed and comparatively moderate reduction in thyroxine (T4). These results support the hypothesis that central opioid signaling exerts differential regulatory effects on components of the hypothalamic-pituitary-thyroid (HPT) axis.

The rapid decline in serum T3 concentrations observed following intracerebroventricular morphine administration suggests a high sensitivity of T3 regulation to central neuroendocrine modulation. This finding is consistent with experimental evidence indicating that opioid agonists can suppress hypothalamic thyrotropin-releasing hormone (TRH) activity, leading to downstream reductions in thyroid hormone secretion [4-6]. Given that T3 represents the biologically active form of thyroid hormone, even modest

central inhibition of TRH may result in substantial peripheral effects, particularly through reduced stimulation of thyroid hormone release and altered peripheral conversion dynamics.

In contrast, the delayed and less pronounced changes in serum T4 observed in the present study suggest that T4 regulation may be buffered by compensatory mechanisms within the HPT axis. Previous research has proposed that T4 levels are maintained through slower regulatory feedback loops and larger circulating pools, which may dampen acute neuroendocrine perturbations [4,5]. The partial recovery of T4 concentrations at later time points further supports the presence of adaptive mechanisms that stabilize T4 availability despite ongoing central opioid influence.

The observed divergence between T3 and T4 responses is further underscored by the sustained reduction in the T3/T4 ratio following morphine administration. This finding indicates that central opioid exposure may preferentially disrupt the balance between active and prohormonal thyroid hormone fractions. Such an imbalance could reflect reduced peripheral conversion of T4 to T3, direct suppression of T3 secretion, or a combination of both processes. Similar patterns have been reported in experimental models examining opioid-thyroid interactions under altered neuroendocrine conditions [1,2].

Importantly, the use of intracerebroventricular administration in this study strengthens the inference that the observed hormonal changes are centrally mediated. Unlike systemic opioid administration, which engages both central and peripheral receptors, the intracerebroventricular approach allows for targeted activation of hypothalamic opioid receptors involved in endocrine regulation [3,8]. This methodological advantage reduces confounding influences and provides clearer insight into the neuroendocrine mechanisms underlying opioid-induced thyroid hormone modulation.

Comparison of the present findings with earlier studies highlights both consistency and advancement in understanding central opioid-thyroid interactions. Early investigations demonstrated that intracerebral administration of morphine could influence thyroid activity; however, these studies primarily relied on indirect or limited endocrine endpoints and lacked systematic quantitative assessment of peripheral hormone levels [3]. The current study extends these foundational observations by providing detailed, time-resolved, and dose-dependent quantitative data for both T3 and T4, thereby offering a more comprehensive characterization of central opioid effects on thyroid hormone regulation.

More recent experimental work employing intracerebroventricular administration has reported reductions in circulating thyroid hormones following central opioid exposure, supporting the notion of hypothalamic mediation [1]. The present results are in agreement with these findings, particularly with respect to the suppressive effect of central morphine on serum T3 levels. However, by incorporating comparative analyses, ratio assessments, and correlation metrics, the current study advances beyond prior reports by demonstrating that T3 and T4 are not equally affected and that their regulatory dynamics differ substantially following central opioid activation.

The differential sensitivity of T3 and T4 observed in this study may be explained by several interacting mechanisms. Opioid-induced suppression of hypothalamic TRH release has been shown to reduce pituitary TSH secretion, thereby limiting thyroid hormone output [4–6]. Given that T3 has a shorter half-life and is more tightly coupled to immediate metabolic regulation, it may exhibit more rapid and pronounced changes in response to central neuroendocrine inhibition. In contrast, T4, with its larger circulating pool and slower turnover, may be partially protected against acute perturbations, resulting in delayed and attenuated responses.

Findings from studies examining altered thyroid states further support this interpretation. Alterations in thyroid hormone availability have been shown to modulate the behavioral and pharmacological effects of morphine, indicating reciprocal interactions between opioid signaling and thyroid function [2]. The present results suggest that this relationship is not unidirectional; rather, central opioid activation can actively reshape peripheral thyroid hormone profiles even under baseline physiological conditions. This bidirectional interplay underscores the complexity of neuroendocrine integration involving opioid and thyroid systems.

The dose-response characteristics identified in the current study also align with previous evidence indicating that opioid effects on endocrine function are concentration-dependent [1]. The pronounced dose sensitivity of T3, compared with the relatively modest dose responsiveness of T4, suggests that central opioid signaling may preferentially target pathways governing active hormone availability rather than overall thyroid hormone production. Such selectivity may have important implications for metabolic regulation, as relatively small changes in T3 can produce substantial physiological effects.

Methodologically, the use of standardized intracerebroventricular cannulation and controlled sampling protocols strengthens the validity of these comparisons. By minimizing peripheral confounders and circadian variability, the present study offers a clearer view of central opioid-thyroid interactions than many earlier investigations relying on systemic administration routes [8]. This methodological rigor enhances confidence in the interpretation that the observed hormonal changes are primarily driven by central mechanisms.

The physiological implications of the present findings are noteworthy, particularly in light of the central role of thyroid hormones in metabolic regulation. The pronounced suppression of serum T3 following intracerebroventricular morphine administration suggests that central opioid signaling may acutely influence metabolic rate and energy homeostasis through modulation of active thyroid hormone availability. Given that T3 directly regulates mitochondrial activity, oxygen consumption, and thermogenesis, even transient reductions may have meaningful physiological consequences.

The sustained reduction in the T3/T4 ratio observed in this study further emphasizes the potential metabolic relevance of central opioid effects. A lowered T3/T4 ratio may reflect impaired peripheral conversion of T4 to T3 or preferential suppression of T3 secretion. Such alterations have been associated with adaptive responses to stress and illness, as well as with altered metabolic efficiency. Central

opioid-induced modulation of this ratio may therefore represent a neuroendocrine mechanism through which the brain adjusts peripheral metabolism in response to opioid signaling.

From a clinical perspective, these findings may have implications for understanding endocrine disturbances associated with opioid exposure. Chronic opioid use has been linked to a range of hormonal dysregulations, and although the majority of clinical attention has focused on gonadal and adrenal axes, thyroid dysfunction may represent an underrecognized component of opioid-related endocrine effects [7]. The present results suggest that central opioid pathways alone are sufficient to alter thyroid hormone homeostasis, raising the possibility that similar mechanisms could contribute to thyroid-related symptoms observed in opioid-treated individuals.

Importantly, the differential sensitivity of T3 and T4 to central morphine exposure may help explain inconsistencies in clinical observations of thyroid function among opioid users. Standard clinical assessments often emphasize T4 or TSH levels, which may not fully capture alterations in T3 dynamics. The current findings underscore the importance of considering active hormone fractions when evaluating endocrine consequences of opioid exposure.

Despite its strengths, the present study has several limitations that should be acknowledged. First, the experimental design focused on acute intracerebroventricular morphine administration, and therefore does not address the effects of chronic or repeated opioid exposure. Long-term adaptations within the HPT axis may differ substantially from acute responses and warrant separate investigation. Second, while serum T3 and T4 provide robust indices of peripheral thyroid hormone status, additional measurements such as TSH or hypothalamic TRH expression could further clarify the precise level at which opioid modulation occurs [4–6].

Another limitation concerns the exclusive use of male animals. Although this approach reduced hormonal variability, it limits the generalizability of the findings to females, in whom interactions between opioid signaling and thyroid function may be influenced by sex hormones. Future studies incorporating both sexes could provide a more comprehensive understanding of opioid-thyroid interactions.

Future research should also explore the molecular and cellular mechanisms underlying the observed hormonal changes. Investigations examining opioid receptor subtype involvement, downstream signaling pathways, and interactions with deiodinase enzymes responsible for peripheral T3 generation would be particularly informative. Additionally, extending this experimental framework to models of chronic opioid exposure may yield insights relevant to long-term clinical opioid use [2,7].

In summary, the findings of the present study provide compelling quantitative evidence that selective activation of central opioid pathways via intracerebroventricular morphine administration significantly disrupts peripheral thyroid hormone regulation. By integrating time-course, dose-response, ratio, and correlation analyses, this study offers a multidimensional characterization of opioid-induced modulation of the hypothalamic-pituitary-thyroid

axis that extends beyond the scope of previous investigations.

The consistency of the observed hormonal patterns across analytical approaches strengthens the conclusion that the effects are robust and centrally mediated. The pronounced sensitivity of T3 to central morphine exposure, contrasted with the more buffered response of T4, highlights the asymmetric nature of thyroid hormone regulation under opioid influence. This asymmetry suggests that central opioid signaling preferentially targets pathways governing active hormone availability rather than total hormone production, a distinction that has important physiological and clinical implications.

By employing intracerebroventricular administration, the present study overcomes a major limitation of earlier research relying on systemic opioid delivery. This methodological choice allows for clearer attribution of endocrine effects to central mechanisms and reduces ambiguity regarding peripheral confounders [3,8]. In doing so, the study provides a more precise framework for interpreting opioid-thyroid interactions and reconciles discrepancies reported in earlier experimental and clinical observations [1,2].

Furthermore, the quantitative nature of the data enhances their translational relevance. The identification of dose-dependent and time-dependent hormonal alterations offers insight into how varying degrees of central opioid exposure may differentially impact thyroid hormone homeostasis. Such information is essential for contextualizing endocrine effects associated with both experimental opioid use and clinical pain management strategies [7].

Overall, the present findings contribute novel evidence to the neuroendocrine literature by demonstrating that central opioid activation alone is sufficient to induce significant and hormone-specific alterations in peripheral thyroid hormone profiles. These results underscore the importance of considering thyroid function within the broader spectrum of opioid-induced endocrine effects and provide a foundation for future investigations aimed at elucidating underlying molecular mechanisms and long-term consequences.

Conclusion

The present study demonstrates that intracerebroventricular administration of morphine produces significant and quantifiable alterations in peripheral thyroid hormone regulation in adult male rats. Central morphine exposure resulted in a rapid and pronounced suppression of serum triiodothyronine, accompanied by a delayed and comparatively moderate reduction in thyroxine levels. These findings indicate that central opioid signaling exerts differential regulatory effects on components of the hypothalamic-pituitary-thyroid axis.

The observed reduction in the T3/T4 ratio further suggests a disruption in the balance between active and prohormonal thyroid hormone fractions, emphasizing the heightened sensitivity of T3 to central neuroendocrine modulation. Dose-response analyses confirmed that T3 suppression was strongly dependent on morphine dose, whereas T4 exhibited limited dose sensitivity. Together,

these results highlight an asymmetric pattern of thyroid hormone regulation following central opioid activation.

By utilizing precise intracerebroventricular delivery and systematic quantitative assessment, this study isolates central mechanisms and provides clear evidence that opioid effects on thyroid hormone homeostasis are not solely attributable to peripheral or systemic influences. The findings advance current understanding of opioid-thyroid interactions and underscore the importance of central neuroendocrine pathways in mediating endocrine outcomes associated with opioid exposure.

From a broader perspective, these results may have implications for experimental neuroendocrinology and for clinical contexts in which opioids are administered. Recognition of thyroid hormone modulation as a component of opioid-induced endocrine effects may inform future research and encourage more comprehensive endocrine monitoring in opioid-treated populations. Further studies examining chronic exposure, sex differences, and underlying molecular pathways are warranted to fully elucidate the long-term significance of central opioid-thyroid interactions.

References

1. Taghvimi S, Asadi M, Khazali H. Effect of intracerebroventricular injection of ghrelin and morphine on plasma T3 and T4 levels in rats. *Experimental Animal Biology*. 2020;8(4):75-83.
2. Zarrindast MR, Khakpaei F. Synergistic analgesic effects of morphine under altered thyroid states in male rats. *Acta Neurobiologiae Experimentalis (Wars)*. 2023;83:154-170.
3. Lomax P, Kokka N, George R. Thyroid activity following intracerebral injection of morphine in the rat. *Neuroendocrinology*. 1970;6(3):146-152.
4. Berglund LA, et al. Opiate-thyroid hormone interactions in the regulation of thyroid-stimulating hormone and thyroid hormones in rats. *Endocrinology Research*. 1990;16(2):112-120.
5. Rúzsás C, Várnai P, Szabó G. Opioidergic regulation of thyroid activity: modulation of the hypothalamic-pituitary-thyroid axis. *Endocrinologia Experimentalis*. 1983;17(4):247-255.
6. Hou TD, Du JZ, Wang YS, et al. Central beta-endorphin suppresses thyrotropin-releasing hormone release and decreases serum T3 and T4 levels. *Acta Pharmacologica Sinica*. 2002;23(10):878-881.
7. Famitafreshi H, Karimian M, Zarrindast MR. Hormones can influence drug addiction: a narrative review. *Biomedicine*. 2021;11:1120.
8. Paxinos G, Watson C. Intracerebroventricular cannulation techniques in rats. *Experimental Biology and Medicine*. 2007;232(1):38-45.

