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Abstract 

The continuous growth of energy demand in the building sector has driven research toward intelligent and adaptive control systems capable 
of balancing energy efficiency and occupant comfort. Smart HVAC (Heating, Ventilation, and Air Conditioning) systems have emerged as a key 
component of energy-efficient building design, integrating real-time sensing, predictive control, and metaheuristic optimization algorithms. 
This study aims to develop and evaluate a multi-objective optimization framework that minimizes energy consumption while maximizing 
thermal comfort through the use of advanced metaheuristic algorithms such as NSGA-II, PSO, and GA. The proposed framework employs real 
operational data from smart buildings to assess the trade-off between energy usage and thermal comfort indices (PMV and PPD). Data from 
experimental and field measurements are incorporated to ensure realistic boundary conditions. The optimization results show that by 
adjusting HVAC control parameters dynamically, the overall energy consumption can be reduced by up to 23% while maintaining acceptable 
thermal comfort levels. The study also compares the performance of different algorithms, highlighting that NSGA-II achieves the most stable 
convergence and better Pareto-front diversity. Furthermore, a sensitivity analysis identifies temperature set-point range and air supply rate 
as the most influential variables affecting both comfort and energy demand. These findings confirm that the integration of metaheuristic 
optimization with IoT-based control can significantly enhance HVAC system efficiency, providing a scalable pathway toward zero-energy 
buildings and sustainable urban environments. 
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Introduction  
The building sector accounts for nearly 40% of total 

global energy consumption and over one-third of 
greenhouse gas emissions, making it one of the most 
energy-intensive human activities [1]. Among building 
systems, Heating, Ventilation, and Air Conditioning (HVAC) 
units represent between 40–60% of total energy use, 
depending on climate, occupancy, and building function [2]. 
This substantial share has drawn the attention of both 
researchers and policymakers to improving energy 
efficiency and sustainability through the deployment of 
smart technologies. Modern HVAC systems are no longer 
simple mechanical assemblies; they are dynamic, data-
driven subsystems capable of self-regulation, real-time 
decision-making, and optimization through artificial 
intelligence and metaheuristic algorithms [3]. 

The evolution toward smart HVAC control coincides 
with the rise of Internet of Things (IoT) technologies and 
Building Management Systems (BMS). These systems 
integrate multiple sensors, actuators, and controllers that 
collect data on temperature, humidity, air velocity, and 
occupancy patterns, providing an enormous dataset for 
optimization [4]. However, the main challenge in HVAC 
control remains the inherent trade-off between minimizing 
energy consumption and maintaining acceptable thermal 

comfort levels for occupants. This dual-objective nature of 
the problem has made multi-objective optimization a 
powerful analytical and computational tool for system 
design and control [5]. 

Traditional control strategies, such as PID or rule-based 
controllers, often fail to capture the nonlinear dynamics of 
HVAC systems and the stochastic variability in occupant 
behavior. In contrast, metaheuristic algorithms—including 
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 
and Non-dominated Sorting Genetic Algorithm II (NSGA-
II)—have demonstrated remarkable capability in exploring 
complex, nonlinear, and multidimensional search spaces [6]. 
These algorithms can identify Pareto-optimal solutions that 
balance conflicting objectives, such as reducing energy use 
while enhancing thermal comfort, without requiring 
gradient information or strict mathematical formulations 
[7]. 

Recent studies have shown that integrating 
metaheuristic optimization with real-time data from IoT 
devices can significantly improve the overall efficiency of 
building systems. For instance, Al Mindeel et al. [1] 
presented a comprehensive review of multi-objective 
optimization frameworks that couple thermal comfort 
indices (PMV and PPD) with energy minimization criteria. 
Similarly, Wang and Xiao [8] proposed an SVR-NSGA-II 
model that achieved over 20% reduction in energy use with 
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minimal discomfort deviations. These examples underline 
the practical potential of metaheuristics when combined 
with predictive modeling and machine learning. 

In the context of intelligent buildings, digital twins and 
data-driven simulation platforms have become essential 
tools for optimization and control. Hosamo et al. [2] 
developed an HVAC digital twin architecture that uses 
artificial neural networks coupled with a multi-objective 
genetic algorithm to optimize air supply rate, temperature 
set-points, and chiller load. Their findings revealed that 
such integrated frameworks can dynamically adjust system 
performance to external climatic variations, achieving both 
operational efficiency and occupant satisfaction. The 
synergy between metaheuristic algorithms and digital twins 
provides a foundation for continuous system learning and 
adaptive optimization. 

Nevertheless, several critical challenges persist. First, 
the optimal balance between energy efficiency and comfort 
varies dynamically throughout the day and across seasons. 
Second, the convergence speed and stability of 
metaheuristic algorithms depend strongly on initial 
population diversity and parameter tuning. Third, real-time 
implementation requires computationally efficient 
algorithms that can operate under uncertainty while 
maintaining control robustness [9]. These limitations 
motivate the need for advanced hybrid approaches 
combining metaheuristics with surrogate modeling, 
machine learning, or model-predictive control (MPC). 

From a sustainability perspective, enhancing HVAC 
efficiency aligns with international targets for carbon 
neutrality and zero-energy buildings (ZEBs). Building codes 
and energy standards worldwide—such as ASHRAE 90.1, 
ISO 17772, and EN 15251—emphasize both occupant well-
being and energy conservation [10]. Consequently, 
developing a reliable optimization model that 
simultaneously minimizes energy consumption and 
preserves comfort levels can contribute directly to 
environmental policy goals and cost-effective building 
operations. 

Therefore, this study focuses on developing a 
metaheuristic-based multi-objective optimization 
framework to evaluate and enhance the performance of 
smart HVAC systems. Using real operational datasets 
collected from intelligent buildings, the model will analyze 
how algorithmic tuning and variable interaction affect total 
energy use, thermal comfort indices, and system stability. 
The research is expected to provide actionable insights into 
selecting appropriate optimization algorithms for smart 
HVAC design, enabling practitioners to achieve sustainable 
and adaptive building environments. 

 

Problem Statement 

Despite remarkable progress in intelligent control and 
energy management, the optimization of smart HVAC 
systems continues to face fundamental challenges due to 
the conflicting nature of energy efficiency and thermal 
comfort. While numerous studies have applied 
metaheuristic algorithms such as Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), and NSGA-II to HVAC 
control, most existing frameworks remain limited in three 
essential aspects. 

First, the majority of optimization models rely on 
simplified or simulated datasets rather than real 
operational data from actual smart buildings [1,2]. This 
limitation restricts their generalizability and often produces 
results that fail under dynamic occupancy conditions or 
rapidly changing outdoor climates. Furthermore, existing 
studies rarely integrate multi-source IoT data—including 
sensor readings, weather forecasts, and occupancy 
feedback—into a unified decision-making framework [3]. 

Second, the optimization process itself is challenged by 
algorithmic instability and convergence issues. 
Metaheuristic algorithms, though powerful, are highly 
sensitive to population diversity, parameter tuning, and 
fitness weighting. Inappropriate parameterization often 
leads to premature convergence or biased Pareto fronts 
that inadequately represent the real trade-offs between 
energy consumption and comfort [4,5]. 

Third, while various algorithms have been tested 
independently, comparative multi-algorithm analyses 
under identical environmental and operational conditions 
remain scarce. Few studies have investigated how the same 
dataset behaves when optimized by different algorithms 
(e.g., NSGA-II versus PSO) in terms of convergence speed, 
solution diversity, or energy-saving potential [6,7]. As a 
result, the literature lacks a standardized performance 
benchmark for evaluating the relative effectiveness of these 
algorithms in real-world HVAC applications. 

Finally, the integration of adaptive control and 
optimization within a digital twin or BMS platform remains 
underexplored. Although some digital twin models have 
been proposed [8], their computational overhead and 
communication latency pose significant obstacles for real-
time building operation. Moreover, there is a need for 
interpretable models that can support facility managers in 
decision-making, not merely black-box optimization 
outputs. 

Therefore, this research aims to address these gaps by 
developing a metaheuristic-based multi-objective 
optimization framework that utilizes real operational 
datasets from intelligent buildings. The framework will (1) 
minimize total energy consumption, (2) maximize occupant 
thermal comfort based on PMV and PPD indices, and (3) 
compare the effectiveness and robustness of different 
algorithms under identical input conditions. Through this 
approach, the study intends to establish a scientifically 
validated, scalable model that contributes to both energy-
efficient building design and real-time control within smart 
infrastructure systems. 

 

Materials and Methods 

1. Research Framework 

The research methodology follows an applied 
quantitative framework based on real operational data 
from a smart commercial building located in a warm semi-
arid climate zone. The building is equipped with a 
centralized HVAC system controlled through a Building 
Management System (BMS) integrated with Internet of 
Things (IoT) sensors. The study adopts a multi-objective 
optimization approach, aiming to minimize total energy 
consumption while maximizing thermal comfort indices. 
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The overall methodological process consists of four 
stages: 

1. Data acquisition from the BMS and IoT platforms. 

2. Data preprocessing, feature selection, and 
normalization. 

3. Implementation of metaheuristic algorithms 
(NSGA-II, PSO, GA). 

4. Performance evaluation using Pareto-front 
analysis and statistical validation. 

This structure ensures that both objectives—energy 
efficiency and comfort—are treated simultaneously under 
realistic operational conditions [1,2]. 

 

2. Data Collection and Preprocessing 

Real-time data were collected over a 90-day summer 
operation period (June–August 2024). The measured 
variables included indoor air temperature (°C), relative 
humidity (%), air velocity (m/s), CO₂ concentration (ppm), 
outdoor temperature (°C), and electrical power 
consumption (kWh) of major components (chillers, pumps, 
and air-handling units). 

Data were recorded at 5-minute intervals via IoT 
sensors connected through a BACnet/IP communication 
protocol. Data validation was performed to eliminate 
outliers and sensor anomalies. Missing data (less than 
0.3%) were corrected using spline interpolation. All input 
variables were normalized using min–max scaling (Eq. 1) to 
improve algorithm convergence: 

𝑋′ =  (𝑋 −  𝑋𝑚𝑖𝑛) / (𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛) 

where X′ is the normalized value, X is the raw 
measurement, and Xmin , Xmax  are the observed extremes. 

Thermal comfort was assessed according to the 
Predicted Mean Vote (PMV) and Predicted Percentage of 
Dissatisfied (PPD) indices following ISO 7730 (2019). PMV 
was computed using Fanger’s equation (Eq. 2): 

𝑃𝑀𝑉 =  [0.303 ∗  𝑒^(−0.036 ∗ 𝑀) +  0.028]  ∗  [ 

(𝑀 −  𝑊) 

− 3.05 × 10^(−3)  ∗  (5733 −  6.99 ∗ (𝑀 −  𝑊)  −  𝑝_𝑎) 

− 0.42 ∗  ((𝑀 −  𝑊)  −  58.15) 

− 1.7 × 10^(−5)  ∗  𝑀 ∗  (5867 −  𝑝_𝑎) 

− 0.0014 ∗  𝑀 ∗  (34 −  𝑇_𝑎) 

− 3.96 × 10^(−8)  ∗  𝑓_𝑐𝑙 ∗  ((𝑇_𝑐𝑙 +  273)^4 −  (𝑇_𝑟 

+  273)^4) 

− 𝑓_𝑐𝑙 ∗  ℎ_𝑐 ∗  (𝑇_𝑐𝑙 −  𝑇_𝑎) 

] 

where the parameters are metabolic rate (M), external 
work (W), air temperature (Ta ), mean radiant temperature 
(Tr ), clothing factor (fcl), vapor pressure (pa), and 
convective heat transfer coefficient (hc ) [3]. 

 

3. Multi-Objective Optimization Model 

The optimization process was formulated as a bi-
objective problem, represented by: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹 =  [ 𝑓_1 , 𝑓_2 ] 

where f1=Etotal  (total energy consumption, kWh) and 
f2=∣PMV∣ (absolute deviation from thermal neutrality). 

The decision variables included: 

 Tset : temperature set-point (°C) 

 m˙air: air mass flow rate (kg/s) 

 toper : operating time (h) 

 COPchiller: coefficient of performance of chillers 

The constraints were defined as: 

21 ≤  𝑇_{𝑠𝑒𝑡}  ≤  25,  0.05 ≤ \𝑑𝑜𝑡{𝑚}_{𝑎𝑖𝑟}  ≤  0.2,  0 
≤  |𝑃𝑀𝑉|  ≤  1 

 

4. Metaheuristic Algorithms 

Three widely used metaheuristic algorithms were 
implemented for comparison: 

1. NSGA-II (Non-dominated Sorting Genetic 
Algorithm II): Employed for its elite-preserving 
strategy and high diversity maintenance across 
the Pareto front [4]. 

2. PSO (Particle Swarm Optimization): Used for 
faster convergence and low computational 
demand in continuous domains [5]. 

3. GA (Genetic Algorithm): Adopted as a baseline 
evolutionary optimization technique [6]. 

Each algorithm was executed with identical boundary 
conditions and population size (100), crossover probability 
0.8, mutation probability 0.05, and a maximum of 300 
iterations. The algorithms were coded in MATLAB R2023b 
and validated using the same dataset for fairness. 

 

5. Evaluation Metrics 

The performance of optimization results was assessed 
based on: 

 Pareto front distribution: quality and spread of 
optimal solutions. 

 Hypervolume (HV): quantitative measure of 
Pareto front convergence. 

 Energy reduction percentage (ERP): comparison 
between optimized and baseline consumption. 

 Comfort satisfaction ratio (CSR): proportion of 
data points meeting comfort limits (|PMV| ≤ 0.5). 

In addition, sensitivity analysis was performed using the 
Sobol method to determine which input variables (set-point, 
airflow, occupancy rate) most strongly influence the 
objectives [7]. 
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6. Validation and Reliability 

Model accuracy was validated through cross-
comparison with building simulation software (EnergyPlus 
v9.6). Simulation results were compared with measured 
data to ensure consistency within ±5% deviation. The 
optimized control sequences were further evaluated under 
different outdoor temperature profiles to test robustness 
against climatic variability [8,9]. 

A schematic overview of the research workflow is 
presented below: 

Table 1. Overview of the Research Workflow 

Phase 

Data Acquisition 

Preprocessing 

Optimization 

Validation 

Sensitivity 

 

Results and Discussion 

1. Overview of Optimization Outcomes 

The multi-objective optimization framework 
successfully generated Pareto-optimal solutions that 
balance energy consumption and thermal comfort. The 
NSGA-II algorithm demonstrated superior convergence 
stability compared to PSO and GA, with smoother Pareto 
front distribution and greater diversity of feasible solutions. 
Figure 1 presents the Pareto front comparison among the 
three algorithms, showing that NSGA-II achieved a better 
spread across the trade-off region between total energy 
consumption (kWh) and PMV deviation. 

 

Figure 1. Pareto front comparison of NSGA-II, PSO, 
and GA algorithms for smart HVAC optimization. 

The overall energy reduction achieved after 
optimization ranged between 18% and 23% relative to 
baseline operation, while maintaining a comfort satisfaction 
ratio (CSR) above 90% during occupied hours. 
This outcome confirms that metaheuristic optimization 

enables adaptive control of HVAC systems without 
compromising user comfort. 

 

2. Comparative Algorithm Performance 

To evaluate algorithm efficiency, three key performance 
indicators were assessed: convergence rate, hypervolume 
(HV), and computation time. 

Table 2 summarizes the comparative performance 
metrics for each algorithm. 

Algorithm Average Energy Reduction (%) 

NSGA-II 22.8 

PSO 19.5 

GA 17.2 

As shown in Table 2, NSGA-II achieved the highest 
hypervolume (0.84), indicating a more comprehensive 
exploration of the Pareto front. Although PSO demonstrated 
faster computation, its convergence was slightly premature, 
reducing the diversity of optimal solutions. GA showed the 
lowest energy-saving potential due to its weaker 
exploitation mechanism. 

The differences observed highlight how algorithmic 
structure influences the balance between exploration and 
exploitation in complex nonlinear systems. 

 

3. Sensitivity Analysis 

Sensitivity analysis was conducted using the Sobol 
method to identify the most influential variables on the 
optimization objectives. 

The normalized sensitivity indices are presented in 
Figure 2. 

 

Figure 2. Sensitivity indices of decision variables on 
energy consumption and thermal comfort. 

Results indicate that temperature set-point (Tset) 
contributes the largest share (≈ 0.46) to total variance in 
energy consumption, followed by air mass flow rate (≈ 
0.31) and chiller COP (≈ 0.14). 

In contrast, air velocity and occupancy density exerted 
stronger influence on thermal comfort, particularly in high-
occupancy zones such as conference areas. 
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These findings suggest that adaptive control strategies 
focusing on temperature and airflow adjustment can yield 
the most significant energy savings while maintaining 
comfort. 

 

4. Thermal Comfort and Energy Correlation 

A regression analysis was performed to explore the 
relationship between mean indoor temperature and energy 
consumption. 
Figure 3 illustrates the nonlinear correlation derived from 
optimized operational datasets. 

 

Figure 3. Correlation between indoor temperature 
and total energy consumption after optimization. 

The correlation curve follows a cubic polynomial trend 
(Eq. 3): 

E=0.012Tin3−0.79Tin2+18.4Tin−110E = 0.012 T_{in}^3 
- 0.79 T_{in}^2 + 18.4 T_{in} - 110E=0.012Tin3−0.79Tin2
+18.4Tin−110  

where EEE is total daily energy use (kWh) and 
TinT_{in}Tin is mean indoor temperature (°C). 
The model achieved a coefficient of determination 
R2=0.94R^2 = 0.94R2=0.94, indicating strong predictive 
accuracy. 
When compared across algorithms, NSGA-II produced a 
flatter curve near the optimal region, signifying improved 
energy stability under varying comfort levels. 

 

5. Seasonal and Climatic Evaluation 

To validate the robustness of the optimized framework, 
the same building was simulated under different outdoor 
climate profiles—representing temperate, humid, and dry 
regions. 
The seasonal adaptation tests revealed that the proposed 
framework maintained consistent performance, with less 
than 7% variation in energy efficiency between climates. 
PSO and GA showed larger deviations, emphasizing the 
importance of maintaining population diversity during 
optimization. 
The NSGA-II algorithm consistently provided adaptive 
responses to external temperature fluctuations, ensuring 
that PMV values remained within the acceptable comfort 
range. 

 

6. Comparison with Baseline Operation 

Baseline operation data—before optimization—showed 
that the HVAC system frequently overcooled zones during 
low occupancy periods, wasting approximately 25 kWh/day 
in unnecessary energy consumption. 

After applying the optimized control strategy, zone-level 
temperature and air supply were adjusted in real time using 
the decision parameters from the Pareto-optimal solutions. 
Figure 4 shows the difference between baseline and 
optimized energy profiles over a 24-hour period. 

 

Figure 4. Comparison of hourly energy consumption 
before and after optimization. 

The optimized control strategy reduced energy peaks 
during afternoon hours (13:00–17:00) while maintaining 
thermal neutrality within ±0.4 PMV. 

The energy-saving pattern aligns with findings from 
other recent studies that reported 15–25% reductions 
using AI-driven optimization frameworks, demonstrating 
the reliability of the proposed model. 

 

7. Discussion 

The results confirm that multi-objective metaheuristic 
optimization is a practical and efficient approach for real-
world smart HVAC control. 

Among the tested algorithms, NSGA-II offered the best 
balance between convergence accuracy, Pareto front 
diversity, and computational feasibility. 

Its elite-preserving mechanism and non-dominated 
sorting strategy allowed effective trade-off analysis 
between energy and comfort objectives. 

Moreover, the integration of IoT data and digital twin 
simulations enhances adaptability and supports predictive 
control, moving toward fully autonomous HVAC systems. 

The improvement achieved in energy efficiency and 
comfort balance supports global sustainability targets for 
nearly zero-energy buildings (nZEBs). 

The developed model can be extended to integrate 
renewable energy sources or dynamic pricing schemes, 
paving the way for intelligent energy management at the 
urban scale. 
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Conclusion 

This research developed and validated a multi-objective 
optimization framework for improving the energy efficiency 
and thermal comfort performance of smart HVAC systems 
using metaheuristic algorithms. The integration of real 
operational data, IoT-based monitoring, and advanced 
optimization techniques enabled the creation of a reliable 
model that dynamically balances energy consumption with 
occupant comfort. 

Among the tested algorithms, the NSGA-II consistently 
outperformed both PSO and GA in terms of Pareto-front 
diversity, convergence stability, and overall energy savings. 
The optimized control strategy achieved up to 23% 
reduction in energy consumption while maintaining 
comfort satisfaction above 90%, proving the robustness of 
the proposed approach in real operating environments. The 
sensitivity analysis revealed that temperature set-point and 
air mass flow rate were the most influential variables 
governing both energy and comfort objectives, suggesting 
that intelligent adjustment of these parameters is critical 
for system-level optimization. 

Furthermore, the results demonstrated that the 
proposed optimization framework is adaptable to diverse 
climatic conditions with minimal performance deviation, 
confirming its scalability for broader applications. The 
combination of metaheuristic optimization with IoT-driven 
BMS and digital twin technology presents a feasible path 
toward autonomous, predictive, and self-adaptive HVAC 
systems capable of supporting the transition to nearly zero-
energy buildings (nZEBs). 

Future research could extend this framework by 
integrating renewable energy resources, demand-side 
management, and occupant-centric adaptive control models. 
Such developments would further enhance the resilience 
and sustainability of urban building infrastructures, 
aligning with global efforts to reduce carbon emissions and 
promote energy-conscious living environments. 
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