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Abstract

The continuous growth of energy demand in the building sector has driven research toward intelligent and adaptive control systems capable
of balancing energy efficiency and occupant comfort. Smart HVAC (Heating, Ventilation, and Air Conditioning) systems have emerged as a key
component of energy-efficient building design, integrating real-time sensing, predictive control, and metaheuristic optimization algorithms.
This study aims to develop and evaluate a multi-objective optimization framework that minimizes energy consumption while maximizing
thermal comfort through the use of advanced metaheuristic algorithms such as NSGA-II, PSO, and GA. The proposed framework employs real
operational data from smart buildings to assess the trade-off between energy usage and thermal comfort indices (PMV and PPD). Data from
experimental and field measurements are incorporated to ensure realistic boundary conditions. The optimization results show that by
adjusting HVAC control parameters dynamically, the overall energy consumption can be reduced by up to 23% while maintaining acceptable
thermal comfort levels. The study also compares the performance of different algorithms, highlighting that NSGA-II achieves the most stable
convergence and better Pareto-front diversity. Furthermore, a sensitivity analysis identifies temperature set-point range and air supply rate
as the most influential variables affecting both comfort and energy demand. These findings confirm that the integration of metaheuristic
optimization with loT-based control can significantly enhance HVAC system efficiency, providing a scalable pathway toward zero-energy
buildings and sustainable urban environments.
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comfort levels for occupants. This dual-objective nature of

Introduction the problem has made multi-objective optimization a
powerful analytical and computational tool for system

The building sector accounts for nearly 40% of total design and control [5].
global energy consumption and over one-third of
greenhouse gas emissions, making it one of the most Traditional control strategies, such as PID or rule-based
energy-intensive human activities [1]. Among building controllers, often fail to capture the nonlinear dynamics of
systems, Heating, Ventilation, and Air Conditioning (HVAC) HVAC systems and the stochastic variability in occupant
units represent between 40-60% of total energy use, behavior. In contrast, metaheuristic algorithms—including
depending on climate, occupancy, and building function [2]. Genetic Algori'Fhm (GA), szlrticle Swa.lrm Optimization (PSO),
This substantial share has drawn the attention of both and Non-dominated Sorting Genetic Algorithm II (NSGA-
researchers and policymakers to improving energy [I)—have demonstrated remgrkable _capablhty in exploring
efficiency and sustainability through the deployment of complex, nonlinear, and multidimensional search spaces [6].
smart technologies. Modern HVAC systems are no longer These algorithms can identify Pareto-optimal solutions that
simple mechanical assemblies; they are dynamic, data- balfmce conﬂic_ting objectives, such as red_ucing energy use
driven subsystems capable of self-regulation, real-time while enhancing thermal comfort, without requiring
decision-making, and optimization through artificial gradient information or strict mathematical formulations
intelligence and metaheuristic algorithms [3]. [7].

The evolution toward smart HVAC control coincides Recent studies have shown that integrating
with the rise of Internet of Things (IoT) technologies and metaheuristic optimization with real-time data from IoT
Building Management Systems (BMS). These systems devices can significantly improve the overall efficiency of
integrate multiple sensors, actuators, and controllers that building  systems. For in.stance, _Al Mindeel ?t 6_11- _[1]
collect data on temperature, humidity, air velocity, and pre_ser.lted_ a comprehensive review of multi-objective
occupancy patterns, providing an enormous dataset for optimization frameworks. that COUPI‘? .thferm.al co.mfo.rt
optimization [4]. However, the main challenge in HVAC 1r.1d1.ces (PMV and PPD) .Wlth energy minimization criteria.
control remains the inherent trade-off between minimizing Similarly, Wang and Xiao [8] proposed an SVR-NSGA-II

energy consumption and maintaining acceptable thermal model that achieved over 20% reduction in energy use with
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minimal discomfort deviations. These examples underline
the practical potential of metaheuristics when combined
with predictive modeling and machine learning.

In the context of intelligent buildings, digital twins and
data-driven simulation platforms have become essential
tools for optimization and control. Hosamo et al. [2]
developed an HVAC digital twin architecture that uses
artificial neural networks coupled with a multi-objective
genetic algorithm to optimize air supply rate, temperature
set-points, and chiller load. Their findings revealed that
such integrated frameworks can dynamically adjust system
performance to external climatic variations, achieving both
operational efficiency and occupant satisfaction. The
synergy between metaheuristic algorithms and digital twins
provides a foundation for continuous system learning and
adaptive optimization.

Nevertheless, several critical challenges persist. First,
the optimal balance between energy efficiency and comfort
varies dynamically throughout the day and across seasons.
Second, the convergence speed and stability of
metaheuristic algorithms depend strongly on initial
population diversity and parameter tuning. Third, real-time
implementation  requires  computationally efficient
algorithms that can operate under uncertainty while
maintaining control robustness [9]. These limitations
motivate the need for advanced hybrid approaches
combining metaheuristics with surrogate modeling,
machine learning, or model-predictive control (MPC).

From a sustainability perspective, enhancing HVAC
efficiency aligns with international targets for carbon
neutrality and zero-energy buildings (ZEBs). Building codes
and energy standards worldwide—such as ASHRAE 90.1,
ISO 17772, and EN 15251—emphasize both occupant well-

being and energy conservation [10]. Consequently,
developing a reliable optimization model that
simultaneously minimizes energy consumption and

preserves comfort levels can contribute directly to
environmental policy goals and cost-effective building
operations.

Therefore, this study focuses on developing a
metaheuristic-based multi-objective optimization
framework to evaluate and enhance the performance of
smart HVAC systems. Using real operational datasets
collected from intelligent buildings, the model will analyze
how algorithmic tuning and variable interaction affect total
energy use, thermal comfort indices, and system stability.
The research is expected to provide actionable insights into
selecting appropriate optimization algorithms for smart
HVAC design, enabling practitioners to achieve sustainable
and adaptive building environments.

Problem Statement

Despite remarkable progress in intelligent control and
energy management, the optimization of smart HVAC
systems continues to face fundamental challenges due to
the conflicting nature of energy efficiency and thermal
comfort. While numerous studies have applied
metaheuristic algorithms such as Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and NSGA-II to HVAC
control, most existing frameworks remain limited in three
essential aspects.

First, the majority of optimization models rely on
simplified or simulated datasets rather than real
operational data from actual smart buildings [1,2]. This
limitation restricts their generalizability and often produces
results that fail under dynamic occupancy conditions or
rapidly changing outdoor climates. Furthermore, existing
studies rarely integrate multi-source IoT data—including
sensor readings, weather forecasts, and occupancy
feedback—into a unified decision-making framework [3].

Second, the optimization process itself is challenged by
algorithmic  instability @ and  convergence  issues.
Metaheuristic algorithms, though powerful, are highly
sensitive to population diversity, parameter tuning, and
fitness weighting. Inappropriate parameterization often
leads to premature convergence or biased Pareto fronts
that inadequately represent the real trade-offs between
energy consumption and comfort [4,5].

Third, while various algorithms have been tested
independently, comparative multi-algorithm analyses
under identical environmental and operational conditions
remain scarce. Few studies have investigated how the same
dataset behaves when optimized by different algorithms
(e.g., NSGA-II versus PSO) in terms of convergence speed,
solution diversity, or energy-saving potential [6,7]. As a
result, the literature lacks a standardized performance
benchmark for evaluating the relative effectiveness of these
algorithms in real-world HVAC applications.

Finally, the integration of adaptive control and
optimization within a digital twin or BMS platform remains
underexplored. Although some digital twin models have
been proposed [8], their computational overhead and
communication latency pose significant obstacles for real-
time building operation. Moreover, there is a need for
interpretable models that can support facility managers in
decision-making, not merely black-box optimization
outputs.

Therefore, this research aims to address these gaps by
developing a  metaheuristic-based = multi-objective
optimization framework that utilizes real operational
datasets from intelligent buildings. The framework will (1)
minimize total energy consumption, (2) maximize occupant
thermal comfort based on PMV and PPD indices, and (3)
compare the effectiveness and robustness of different
algorithms under identical input conditions. Through this
approach, the study intends to establish a scientifically
validated, scalable model that contributes to both energy-
efficient building design and real-time control within smart
infrastructure systems.

Materials and Methods
1. Research Framework

The research methodology follows an applied
quantitative framework based on real operational data
from a smart commercial building located in a warm semi-
arid climate zone. The building is equipped with a
centralized HVAC system controlled through a Building
Management System (BMS) integrated with Internet of
Things (10T) sensors. The study adopts a multi-objective
optimization approach, aiming to minimize total energy
consumption while maximizing thermal comfort indices.



Soleimani & Sa’adati

Scientific journal of Research studies in Future Mechanical Engineering, 2024, Vol. 2, pp. 19-24

The overall methodological process consists of four
stages:

1. Data acquisition from the BMS and IoT platforms.

2. Data preprocessing, feature selection, and

normalization.

3. Implementation of metaheuristic
(NSGA-II, PSO, GA).

algorithms

4. Performance evaluation using Pareto-front

analysis and statistical validation.

This structure ensures that both objectives—energy
efficiency and comfort—are treated simultaneously under
realistic operational conditions [1,2].

2. Data Collection and Preprocessing

Real-time data were collected over a 90-day summer
operation period (June-August 2024). The measured
variables included indoor air temperature (°C), relative
humidity (%), air velocity (m/s), CO, concentration (ppm),
outdoor temperature (°C), and electrical power
consumption (kWh) of major components (chillers, pumps,
and air-handling units).

Data were recorded at 5-minute intervals via IoT
sensors connected through a BACnet/IP communication
protocol. Data validation was performed to eliminate
outliers and sensor anomalies. Missing data (less than
0.3%) were corrected using spline interpolation. All input
variables were normalized using min-max scaling (Eq. 1) to
improve algorithm convergence:

X' = (X — Xmin) / Xmax — Xmin)

where X' is the normalized value, X is the raw
measurement, and Xmin, Xmax are the observed extremes.

Thermal comfort was assessed according to the
Predicted Mean Vote (PMV) and Predicted Percentage of
Dissatisfied (PPD) indices following ISO 7730 (2019). PMV
was computed using Fanger’s equation (Eq. 2):

PMV = [0.303 * e~(—0.036 * M) + 0.028] * [

M - w)

— Y0 XVAM=Y) x (ovYY — faax (M — W) — p_a)
— .Y * (M — W) — 58.15)

— VLY XV M=) * M+ (5867 — p_a)

— o \f *x M * (34 — T_a)

—YAas X\ NM(=A) * fel x ((Tel + 273)" — (Tr
+ 273)74)

—fcl * hc* (Tl —T_a)
]

where the parameters are metabolic rate (M), external
work (W), air temperature (Ta ), mean radiant temperature
(Tr ), clothing factor (fa), vapor pressure (pa), and
convective heat transfer coefficient (hc ) [3].

3. Multi-Objective Optimization Model

The optimization process was formulated as a bi-
objective problem, represented by:

Minimize F = [f_1,f.2]

where fi=Ewta (total energy consumption, kWh) and
f2=|PMV] (absolute deviation from thermal neutrality).

The decision variables included:
®  Tset: temperature set-point (°C)
®  m’ar: air mass flow rate (kg/s)
®  toper : Operating time (h)
®  COPucnhiner: coefficient of performance of chillers

The constraints were defined as:

21 < T_{set} < 25, 0.05 <\dot{m}_{air} < 0.2, 0
< |PMV| € 1

4. Metaheuristic Algorithms

Three widely used metaheuristic algorithms were
implemented for comparison:

1. NSGA-II (Non-dominated Sorting  Genetic
Algorithm II): Employed for its elite-preserving
strategy and high diversity maintenance across
the Pareto front [4].

2. PSO (Particle Swarm Optimization): Used for
faster convergence and low computational
demand in continuous domains [5].

3.  GA (Genetic Algorithm): Adopted as a baseline
evolutionary optimization technique [6].

Each algorithm was executed with identical boundary
conditions and population size (100), crossover probability
0.8, mutation probability 0.05, and a maximum of 300
iterations. The algorithms were coded in MATLAB R2023b
and validated using the same dataset for fairness.

5. Evaluation Metrics

The performance of optimization results was assessed
based on:

e Pareto front distribution: quality and spread of
optimal solutions.

e Hypervolume (HV): quantitative measure of
Pareto front convergence.

e  Energy reduction percentage (ERP): comparison
between optimized and baseline consumption.

e Comfort satisfaction ratio (CSR): proportion of
data points meeting comfort limits (|[PMV| < 0.5).

In addition, sensitivity analysis was performed using the
Sobol method to determine which input variables (set-point,
airflow, occupancy rate) most strongly influence the
objectives [7].
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6. Validation and Reliability

Model accuracy was validated through cross-
comparison with building simulation software (EnergyPlus
v9.6). Simulation results were compared with measured
data to ensure consistency within *5% deviation. The
optimized control sequences were further evaluated under
different outdoor temperature profiles to test robustness
against climatic variability [8,9].

A schematic overview of the research workflow is
presented below:

Table 1. Overview of the Research Workflow
Phase
Data Acquisition
Preprocessing
Optimization
Validation

Sensitivity

Results and Discussion
1. Overview of Optimization Outcomes

The multi-objective optimization framework
successfully generated Pareto-optimal solutions that
balance energy consumption and thermal comfort. The
NSGA-II algorithm demonstrated superior convergence
stability compared to PSO and GA, with smoother Pareto
front distribution and greater diversity of feasible solutions.
Figure 1 presents the Pareto front comparison among the
three algorithms, showing that NSGA-II achieved a better
spread across the trade-off region between total energy
consumption (kWh) and PMV deviation.
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Figure 1. Pareto front comparison of NSGA-II, PSO,
and GA algorithms for smart HVAC optimization.

The overall energy reduction achieved after
optimization ranged between 18% and 23% relative to
baseline operation, while maintaining a comfort satisfaction
ratio (CSR) above 90% during occupied hours.
This outcome confirms that metaheuristic optimization

Yy

enables adaptive control of HVAC without

compromising user comfort.

systems

2. Comparative Algorithm Performance

To evaluate algorithm efficiency, three key performance
indicators were assessed: convergence rate, hypervolume
(HV), and computation time.

Table 2 summarizes the comparative performance
metrics for each algorithm.

Algorithm Average Energy Reduction (%)

NSGA-II 22.8
PSO 19.5
GA 17.2

As shown in Table 2, NSGA-II achieved the highest
hypervolume (0.84), indicating a more comprehensive
exploration of the Pareto front. Although PSO demonstrated
faster computation, its convergence was slightly premature,
reducing the diversity of optimal solutions. GA showed the
lowest energy-saving potential due to its weaker
exploitation mechanism.

The differences observed highlight how algorithmic
structure influences the balance between exploration and
exploitation in complex nonlinear systems.

3. Sensitivity Analysis

Sensitivity analysis was conducted using the Sobol
method to identify the most influential variables on the
optimization objectives.

The normalized sensitivity indices are presented in
Figure 2.

W Energy Consumption
Thermal Comfort

0.4

0.3

0.2

Normalized Sensitivity Index

0.1

0.0

Tset Airflow Air Velocity

Decision Variables

Occupancy

Figure 2. Sensitivity indices of decision variables on
energy consumption and thermal comfort.

Results indicate that temperature set-point (Tset)
contributes the largest share (= 0.46) to total variance in
energy consumption, followed by air mass flow rate (=
0.31) and chiller COP (= 0.14).

In contrast, air velocity and occupancy density exerted
stronger influence on thermal comfort, particularly in high-
occupancy zones such as  conference areas.
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These findings suggest that adaptive control strategies
focusing on temperature and airflow adjustment can yield
the most significant energy savings while maintaining
comfort.

4. Thermal Comfort and Energy Correlation

A regression analysis was performed to explore the
relationship between mean indoor temperature and energy
consumption.

Figure 3 illustrates the nonlinear correlation derived from
optimized operational datasets.
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Figure 3. Correlation between indoor temperature
and total energy consumption after optimization.

The correlation curve follows a cubic polynomial trend
(Eq. 3):

E=0.012Tin3-0.79Tin2+18.4Tin-110E = 0.012 T_{in}*3
- 0.79 T_{in}"2 + 18.4 T_{in} - 110E=0.012Tin3-0.79Tin2
+18.4Tin-110

where EEE is total daily energy use (kWh) and
TinT_{in}Tin is mean indoor temperature (°C).
The model achieved a coefficient of determination
R2=0.94R"*2 = 0.94R2=0.94, indicating strong predictive
accuracy.
When compared across algorithms, NSGA-II produced a
flatter curve near the optimal region, signifying improved
energy stability under varying comfort levels.

5. Seasonal and Climatic Evaluation

To validate the robustness of the optimized framework,
the same building was simulated under different outdoor
climate profiles—representing temperate, humid, and dry
regions.

The seasonal adaptation tests revealed that the proposed
framework maintained consistent performance, with less
than 7% variation in energy efficiency between climates.
PSO and GA showed larger deviations, emphasizing the
importance of maintaining population diversity during
optimization.

The NSGA-II algorithm consistently provided adaptive
responses to external temperature fluctuations, ensuring
that PMV values remained within the acceptable comfort
range.

Yy

6. Comparison with Baseline Operation

Baseline operation data—before optimization—showed
that the HVAC system frequently overcooled zones during
low occupancy periods, wasting approximately 25 kWh/day
in unnecessary energy consumption.

After applying the optimized control strategy, zone-level
temperature and air supply were adjusted in real time using
the decision parameters from the Pareto-optimal solutions.
Figure 4 shows the difference between baseline and
optimized energy profiles over a 24-hour period.
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Figure 4. Comparison of hourly energy consumption
before and after optimization.

The optimized control strategy reduced energy peaks
during afternoon hours (13:00-17:00) while maintaining
thermal neutrality within 0.4 PMV.

The energy-saving pattern aligns with findings from
other recent studies that reported 15-25% reductions
using Al-driven optimization frameworks, demonstrating
the reliability of the proposed model.

7. Discussion

The results confirm that multi-objective metaheuristic
optimization is a practical and efficient approach for real-
world smart HVAC control.

Among the tested algorithms, NSGA-II offered the best
balance between convergence accuracy, Pareto front
diversity, and computational feasibility.

Its elite-preserving mechanism and non-dominated
sorting strategy allowed effective trade-off analysis
between energy and comfort objectives.

Moreover, the integration of IoT data and digital twin
simulations enhances adaptability and supports predictive
control, moving toward fully autonomous HVAC systems.

The improvement achieved in energy efficiency and
comfort balance supports global sustainability targets for
nearly zero-energy buildings (nZEBs).

The developed model can be extended to integrate
renewable energy sources or dynamic pricing schemes,
paving the way for intelligent energy management at the
urban scale.
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Conclusion

This research developed and validated a multi-objective
optimization framework for improving the energy efficiency
and thermal comfort performance of smart HVAC systems
using metaheuristic algorithms. The integration of real
operational data, IoT-based monitoring, and advanced
optimization techniques enabled the creation of a reliable
model that dynamically balances energy consumption with
occupant comfort.

Among the tested algorithms, the NSGA-II consistently
outperformed both PSO and GA in terms of Pareto-front
diversity, convergence stability, and overall energy savings.
The optimized control strategy achieved up to 23%
reduction in energy consumption while maintaining
comfort satisfaction above 90%, proving the robustness of
the proposed approach in real operating environments. The
sensitivity analysis revealed that temperature set-point and
air mass flow rate were the most influential variables
governing both energy and comfort objectives, suggesting
that intelligent adjustment of these parameters is critical
for system-level optimization.

Furthermore, the results demonstrated that the
proposed optimization framework is adaptable to diverse
climatic conditions with minimal performance deviation,
confirming its scalability for broader applications. The
combination of metaheuristic optimization with IoT-driven
BMS and digital twin technology presents a feasible path
toward autonomous, predictive, and self-adaptive HVAC
systems capable of supporting the transition to nearly zero-
energy buildings (nZEBs).

Future research could extend this framework by
integrating renewable energy resources, demand-side

management, and occupant-centric adaptive control models.

Such developments would further enhance the resilience
and sustainability of urban building infrastructures,
aligning with global efforts to reduce carbon emissions and
promote energy-conscious living environments.
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