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Abstract 

The rapid growth of Internet-of-Things (IoT) technologies has significantly contributed to the evolution of Cyber-Physical Systems (CPS), 
particularly within smart campus infrastructures. Despite these advancements, IoT-based CPS are increasingly vulnerable to adversarial 
attacks that can compromise data integrity, sensor accuracy, and system safety. Traditional AI-based defense mechanisms often lack 
contextual awareness and interpretability. This paper introduces an ontology-enhanced neuro-symbolic framework to detect and mitigate 
adversarial attacks in IoT-enabled CPS environments. Our approach integrates domain ontologies with a hybrid architecture that combines 
symbolic reasoning and deep learning to enhance resilience and explainability. The ontology captures semantic relationships among entities 
such as sensors, data streams, physical contexts, and network behavior within the smart campus ecosystem. The neuro-symbolic engine 
processes this structured knowledge alongside raw sensor data, enabling context-aware anomaly detection and response. To validate the 
proposed system, we deploy it in a real-world smart campus testbed comprising over 150 IoT nodes, including surveillance cameras, HVAC 
controllers, environmental sensors, and access control units. The system is tested against a range of adversarial attacks including data 
poisoning, model evasion, and logic manipulation. Experimental results demonstrate a 27% increase in adversarial detection accuracy 
compared to standard CNN and RNN models, with a 19% improvement in false-positive reduction. Furthermore, symbolic inference allows 
for better interpretation of attack sources and propagation paths. The fusion of ontological context and machine learning outputs leads to 
actionable insights for campus administrators and security personnel. This study underscores the importance of semantic knowledge in 
improving AI robustness and sets the groundwork for scalable, interpretable, and resilient defense systems in CPS. Future work will explore 
extending the ontology to inter-campus networks and integrating federated learning to ensure privacy-preserving collaboration. 
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1- Introduction  
integration of Internet-of-Things (IoT) technologies 

with physical infrastructure has ushered in a new era of 
intelligent systems commonly referred to as Cyber-Physical 
Systems (CPS). These systems form the backbone of smart 
cities, industrial automation, healthcare systems, and 
educational campuses. The smart campus is an exemplary 
CPS environment, consisting of interconnected devices such 
as surveillance cameras, energy controllers, and biometric 
access systems working in coordination to optimize 
operations and enhance user experiences. However, with 
this increasing reliance on AI-driven automation and real-
time data exchange, these systems have become 
increasingly susceptible to adversarial attacks targeting 
both software and hardware components. 

Adversarial attacks in the context of CPS typically 
exploit the vulnerabilities of machine learning (ML) models 
used in tasks such as classification, anomaly detection, and 
decision-making. These attacks are engineered to mislead 
models by introducing imperceptible perturbations to input 
data or by crafting malicious logic within the system's 
operation. For instance, an attacker could spoof 
environmental sensor data to trigger false alarms or 
manipulate traffic routing systems by exploiting 

vulnerabilities in model behavior. In the smart campus 
context, such manipulations may result in compromised 
surveillance, unauthorized access, or energy 
mismanagement, thereby affecting operational integrity 
and safety. 

Traditional defense approaches largely rely on reactive 
strategies, such as retraining ML models or applying 
heuristic-based anomaly detection mechanisms. While 
these approaches offer partial protection, they often fail in 
dynamic environments where context-aware reasoning and 
semantic understanding are crucial. Moreover, their black-
box nature limits explainability, making it difficult for 
human operators to interpret alerts and take corrective 
actions effectively. 

Recent advances in neuro-symbolic AI have opened new 
avenues for enhancing the robustness and transparency of 
intelligent systems. By combining the statistical power of 
deep learning with the semantic clarity of symbolic 
reasoning, neuro-symbolic architectures promise more 
interpretable and generalizable solutions. These systems 
are capable of integrating structured domain knowledge, 
typically captured in ontologies, with unstructured sensor 
data, facilitating context-aware decision-making processes. 
Ontologies, defined as formal representations of knowledge 
domains, provide a rich semantic layer that describes 

https://journalhi.com/index.php/com/


Scientific Journal of Research Studies in Future Computer Sciences, 2025, Vol. 2, pp. 1-12 Setaei                                             

 

 

23 

 

entities, attributes, relationships, and constraints relevant 
to the system under observation. 

In this research, we propose a novel ontology-enhanced 
neuro-symbolic framework tailored to defend IoT-enabled 
CPS against adversarial attacks in a smart campus 
environment. The proposed model incorporates a domain-
specific ontology that encodes relationships among devices, 
services, environmental states, and user roles. This 
semantic context is fused with sensory data in a hybrid 
reasoning engine composed of a neural network component 
for feature extraction and symbolic logic rules for inference. 
The system is designed not only to detect malicious 
behavior but also to explain the reasoning process behind 
its decisions, thereby increasing operator trust and 
improving system transparency. 

To demonstrate the effectiveness of the proposed 
framework, we implement it in a real-world smart campus 
testbed involving over 150 IoT nodes, including 
temperature sensors, CCTV systems, smart lighting, and 
access control panels. A variety of adversarial scenarios are 
simulated, such as false data injection, access policy evasion, 
and topology spoofing. Our results show a significant 
improvement in detection accuracy and reduction in false 
positives when compared to baseline models such as 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs). Furthermore, we analyze the 
performance of symbolic reasoning in tracing the 
propagation path of attacks, which is particularly useful for 
containment and recovery. 

The heterogeneity of IoT devices and the scale of 
deployment in smart campus infrastructures introduce 
unique challenges for securing Cyber-Physical Systems. 
Devices vary in their computational capabilities, operating 
systems, communication protocols, and energy constraints, 
making centralized defense strategies inefficient or 
infeasible. In this context, decentralized, context-aware, and 
explainable defense frameworks become indispensable. 
Moreover, adversarial attacks are not limited to data 
manipulation but may involve strategic targeting of 
inference pipelines, system control logic, or even learning-
based access management systems. As such, a multi-layered 
defense that fuses symbolic reasoning with statistical 
learning becomes crucial. 

Neuro-symbolic systems have shown particular promise 
in applications requiring generalization, abstraction, and 
logical reasoning over structured domains. These systems 
can model causal relationships, detect rule violations, and 
adapt to novel situations based on prior knowledge 
encoded in ontologies. For instance, if a temperature sensor 
in a classroom reports values exceeding plausible 
thresholds while no occupancy is detected, the system may 
infer a possible spoofing attempt or hardware malfunction. 
Such insights would be challenging for a purely data-driven 
model without semantic context. 

Ontologies play a central role in enabling such context-
awareness. By capturing domain-specific knowledge—such 
as "access to lab A is restricted to graduate students 
between 8 am and 10 pm", or "CO₂ level above 1000 ppm 
indicates poor ventilation"—the system can apply logical 
inference over observed data patterns. These formalized 
concepts are particularly useful in detecting policy 
violations or inconsistent behaviors that may signal 
adversarial presence. 

In our proposed architecture, the ontology layer is 
tightly coupled with a deep neural component that 
processes real-time data feeds. The symbolic layer monitors 
high-level behavior using rules and constraints defined over 
the ontology. For example, the ontology encodes relations 
like "sensor X is in room Y", "device Z controls HVAC in zone 
A", or "camera W monitors hallway B". These relations 
allow the system to reason about physical proximity, data 
dependencies, and functional roles—facilitating root cause 
analysis and anomaly correlation. 

A notable strength of this ontology-enhanced approach 
lies in its interpretability. Security alerts generated by the 
system are traceable through both symbolic rules and 
neural activation paths, enabling human operators to 
understand why certain actions were flagged as malicious. 
In contrast, conventional ML models often operate as black 
boxes, limiting operator trust and hindering rapid response. 
This explainability is particularly valuable in environments 
like smart campuses where operational safety and 
compliance are critical. 

The growing body of literature on adversarial machine 
learning has identified a clear need for hybrid AI 
architectures that combine knowledge-based reasoning 
with adaptive learning. However, few studies have 
operationalized such architectures in real-world settings, 
especially in IoT-driven CPS. Our work addresses this gap 
by deploying and evaluating the proposed defense system 
in an operational smart campus, thus contributing not only 
a novel methodology but also empirical insights into its 
effectiveness under adversarial stress. 

A key aspect that distinguishes the proposed framework 
from conventional intrusion detection systems (IDS) lies in 
its proactive and semantically grounded defense 
mechanism. Unlike traditional IDS solutions that depend on 
signature databases or static statistical thresholds, the 
ontology-enhanced neuro-symbolic system interprets data 
in the context of predefined logical constraints and evolving 
behavior models. This capacity for dynamic adaptation 
allows it to detect zero-day attacks or previously unseen 
adversarial patterns based on inconsistencies within the 
system’s semantic model rather than historical data alone. 

Another important technical benefit is modularity. The 
proposed framework is designed with loosely coupled 
layers—ontology representation, deep learning feature 
extraction, and symbolic inference—which allows flexibility 
and scalability in deployment. For instance, if a new type of 
IoT device (e.g., an autonomous cleaning robot) is added to 
the campus network, only the ontology needs to be 
extended to accommodate new entities and relationships. 
The neural layer continues to process sensor streams, while 
the symbolic layer adjusts inference rules accordingly. This 
separation of concerns improves maintainability, a feature 
often missing in monolithic AI systems. 

Our implementation leverages open standards such as 
OWL (Web Ontology Language) for semantic modeling and 
TensorFlow for deep learning inference. The rule engine is 
based on SWRL (Semantic Web Rule Language), which 
facilitates declarative reasoning over ontology facts. This 
stack enables interoperability and future integration with 
semantic web technologies, federated data environments, 
and other CPS components. 

A particularly innovative component of our system is 
the Threat Inference Graph (TIG), which visualizes detected 
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adversarial behaviors across the smart campus 
infrastructure. This graph provides a real-time overview of 
attack propagation, inter-device communication, and 
inferred causality paths, supporting both automated 
decision-making and human-in-the-loop analysis. By 
transforming abstract detection metrics into intuitive 
semantic insights, the TIG enhances both situational 
awareness and incident response planning. 

To contextualize this advancement, consider a scenario 
where a series of HVAC units start reporting anomalous 
energy usage. A traditional anomaly detector may flag the 
outliers based on numerical thresholds but lacks clarity on 
causality. In our framework, the symbolic layer checks 
logical consistency: Are these devices in the same zone? Do 
they share upstream controllers? Has there been recent 
access policy change? This layered reasoning leads to a 
richer understanding of potential attack vectors or 
misconfigurations. 

Our framework is not intended to replace traditional 
cybersecurity layers (e.g., firewalls, encryption protocols), 
but to complement them by providing semantic-layer 
defense that bridges human comprehension and machine-
level anomaly detection. This added layer is particularly 
relevant in academic campuses where systems must 
balance accessibility, flexibility, and security. 

The primary objective of this study is to develop and 
empirically validate a neuro-symbolic defense framework 
that leverages ontology-based reasoning to detect and 
mitigate adversarial attacks in real-time within IoT-enabled 
Cyber-Physical Systems. Our specific focus lies in the 
context of a smart campus, where multiple subsystems—
ranging from surveillance and energy control to access 
management and environmental monitoring—interact 
dynamically and autonomously. 

The central research question addressed in this paper 
is: 

"Can a hybrid neuro-symbolic system enriched by 
domain-specific ontology improve adversarial attack 
detection accuracy and interpretability in IoT-based CPS 
environments, compared to purely data-driven models?" 

In pursuit of this question, we design a layered defense 
architecture that integrates semantic knowledge 
representation with deep neural network outputs. Unlike 
previous works that treat ontology as a peripheral 
component, our method embeds ontological reasoning at 
the core of decision-making. This tight coupling enables 
dynamic rule enforcement, context-driven anomaly 
detection, and structured propagation tracing—features 
vital in large-scale, heterogeneous, and partially trusted 
environments like smart campuses. 

This research makes the following key contributions: 

 A domain-specific ontology designed for smart 
campus infrastructures, modeling relationships 
among devices, zones, user roles, access policies, 
and operational constraints. 

 A neuro-symbolic defense engine that fuses 
semantic reasoning with feature-based detection 
to identify adversarial behaviors at both the data 
and behavior layers. 

 An experimental validation framework based on a 
real-world deployment across over 150 IoT nodes, 
incorporating diverse data streams and attack 
vectors. 

 A Threat Inference Graph (TIG) that enables real-
time visualization and explanation of attack paths, 
causes, and system responses, aiding both 
automation and human interpretation. 

The remainder of this paper is structured as follows. 
Section 2 provides a detailed review of related work, 
including previous efforts in adversarial defense, ontology-
driven security, and neuro-symbolic reasoning. Section 3 
outlines the proposed methodology, including ontology 
design, system architecture, and deployment details. 
Section 4 presents the experimental setup and results, 
followed by Section 5, which discusses key findings and 
implications. Section 6 concludes with future research 
directions and practical considerations. 

Through this work, we demonstrate that integrating 
semantic knowledge with neural processing not only 
improves detection performance but also enhances system 
explainability—an essential criterion for real-world 
security applications in cyber-physical infrastructures. 

2- Problem Statement 
The rapid proliferation of IoT devices in Cyber-Physical 

Systems (CPS) has revolutionized intelligent environments 
such as smart campuses, enabling real-time automation, 
context-aware decision-making, and large-scale data 
integration. However, this technological advancement is 
paralleled by a growing surface for cyber-physical attacks—
particularly adversarial attacks—that exploit vulnerabilities 
in machine learning models at the heart of these systems. 
These attacks, often subtle and carefully crafted, can 
deceive AI classifiers, alter inference outcomes, and even 
trigger incorrect actuations in physical infrastructure, 
thereby compromising both safety and reliability. 

While conventional defense mechanisms—including 
statistical anomaly detection, rule-based filters, and 
adversarial training—have been widely adopted, they suffer 
from several limitations: (1) they often fail to generalize 
beyond known attack patterns, (2) they lack contextual 
awareness of the operational environment, and (3) they are 
mostly black-box models, offering little to no 
interpretability for human stakeholders. These 
shortcomings make them unsuitable for complex, real-time, 
and trust-sensitive environments like smart campuses, 
where operators need to understand not only what is 
wrong, but also why and how the system arrived at a 
decision. 

Moreover, smart campus infrastructures are inherently 
heterogeneous, involving hundreds of interconnected 
devices, dynamic user roles, temporal constraints, and 
spatial dependencies. The lack of semantic modeling in 
current AI-driven defense systems prevents effective 
reasoning over such multi-dimensional, evolving 
environments. This leads to an urgent need for a hybrid and 
explainable defense framework that can integrate symbolic 
knowledge with statistical inference to bridge the gap 
between machine efficiency and human understanding. 

Despite emerging interest in neuro-symbolic 
approaches and ontology-based security systems, existing 
literature remains limited in demonstrating practical 
implementations within real-world CPS environments. Most 
studies are either simulation-based or focus narrowly on 
one aspect (e.g., data layer or network protocols), ignoring 
system-wide coherence and traceability of anomalies. 

This research addresses these gaps by developing and 
evaluating an ontology-enhanced neuro-symbolic 
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framework for detecting adversarial attacks in IoT-based 
CPS, using a smart campus as a testbed. The aim is to create 
a semantically enriched, interpretable, and scalable system 
that not only detects threats but also provides meaningful 
explanations and actionable insights for rapid incident 

response and long-term resilience planning. 

3- Methodology 
The proposed defense framework is designed as a 

multi-layered, ontology-enhanced neuro-symbolic system 
capable of real-time adversarial threat detection and 
semantic reasoning in smart campus infrastructures. The 
methodology comprises four major components: (1) 
Domain Ontology Design, (2) Deep Learning-Based Feature 
Extraction, (3) Symbolic Inference Layer, and (4) Threat 
Inference Graph (TIG). Each layer is modular, interoperable, 
and designed for scalability across heterogeneous CPS 
deployments. 

3.1 Domain Ontology Design 
The ontology serves as the semantic backbone of the 

system, formally capturing the domain knowledge relevant 
to the smart campus environment. It was developed using 
the Web Ontology Language (OWL 2) and includes the 
following core classes: 

 Devices: Sensors, cameras, actuators, controllers. 

 Locations: Buildings, rooms, access zones. 

 Events: Sensor readings, access logs, alerts. 

 Roles: Students, faculty, staff, visitors. 

 Policies: Access rights, time constraints, device 
dependencies. 

Each class is connected via object properties such as 
isLocatedIn, hasAccessTo, monitors, controls, and 
triggeredBy. Data properties (e.g., sensorValue, timestamp, 
roleType) are used to relate instances to attributes. The 
ontology also encodes axioms such as: 

 
This allows automated reasoning engines to infer high-

level anomalies based on logical inconsistency or constraint 
violations. 

3.2 Neural Feature Extraction 
The second layer involves real-time data ingestion and 

feature extraction from multiple IoT streams (e.g., 
temperature, occupancy, motion, network traffic). A 
convolutional neural network (CNN) architecture was 
employed to process time-series data and spatial patterns 
from camera and environmental sensors. The architecture 
includes: 

 Input layer: Normalized sensor readings from 
150+ devices. 

 Convolutional blocks: Extracted local patterns of 
change in data. 

 Pooling layers: Reduced dimensionality while 
preserving relevant features. 

 Dense layers: Learned joint representations of 
contextual states. 

The final output is a vectorized encoding of sensor 
behavior, which is passed to the symbolic reasoning layer 
for semantic evaluation. 

3.3 Dataset and Smart Campus Testbed 
Data collection was conducted over a three-month 

period from a real-world smart campus comprising: 

 156 IoT devices (47 environmental sensors, 39 IP 
cameras, 23 smart locks, 18 HVAC units, 29 access 
readers) 

 19 buildings (labs, classrooms, dormitories, 
administration offices) 

 Over 3.1 million events, logs, and sensor values 
collected 

Both benign and adversarial conditions were simulated. 
Attack scenarios included: 

 False Data Injection (FDI): Spoofed sensor values 
to induce HVAC misactivation. 

 Logic Bomb Triggers: Unauthorized access 
granted to restricted labs via time manipulation. 

 Backdoor Model Manipulation: Injected 
adversarial samples during classifier training 
phase for camera-based access detection. 

Ground truth labeling was conducted by a human-in-
the-loop evaluation team, ensuring validation integrity. 

 3.4 Symbolic Inference and Reasoning Layer 
The symbolic reasoning layer operates in parallel with 

the neural component to provide semantic evaluation and 
explanation of system behavior. It uses the ontology 
constructed in Section 3.1 and a rule-based engine powered 
by SWRL (Semantic Web Rule Language) to infer high-level 
anomalies. Rules are designed based on domain policies and 
attack signatures derived from expert knowledge and 
literature. 

Example SWRL Rule: 

 
This rule captures unauthorized access behavior by a 

visitor to a restricted zone outside permitted hours. When 
combined with neural outputs (e.g., detected anomaly in 
access pattern), the system boosts confidence in identifying 
true positives and reduces noise. 

Each symbolic rule is linked to ontology axioms, 
enabling the system to generalize the context and extend 
conclusions based on hierarchical knowledge. For instance, 
an event classified under MaliciousAccessEvent inherits 
constraints from both AccessEvent and SecurityViolation, 
allowing broader consistency checking. 

The reasoning engine operates in two modes: 

 Real-Time Mode: Continuous stream reasoning 
with sliding time windows, detecting temporal 
inconsistencies or violations. 

 Batch Mode: Retrospective inference over logged 
data for forensics, audit, and long-term threat 
pattern discovery. 

3.5 Threat Inference Graph (TIG) 
To enhance operator interpretability, the system 

generates a Threat Inference Graph (TIG) that visualizes the 
inferred relationships among detected anomalies, system 
components, and propagation paths. The TIG is a dynamic, 
ontology-aligned graph where: 

 Nodes represent system entities (e.g., sensors, 
users, zones, roles, events). 

 Edges denote semantic or causal relationships 
(e.g., "controls", "triggered_by", "is_related_to"). 

 Colors/Weights indicate severity or confidence 
score of the anomaly. 
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Figure 1. Sample TIG generated during access policy 

violation scenario. 
 

The TIG is generated automatically upon alert detection 
and updated in real-time. It serves multiple purposes: 

 Supports root cause analysis by tracking upstream 
and downstream impact. 

 Enables anomaly clustering based on shared 
causal paths. 

 Enhances incident response through visualization 
of temporal and spatial spread. 

The semantic nature of the TIG makes it adaptable 
across campus domains, from labs and dormitories to 
energy control systems. Moreover, it facilitates integration 
with external monitoring dashboards via SPARQL queries 
and JSON-based APIs. 

3.6 Fusion Strategy 
A central innovation in our framework is the decision 

fusion module which combines neural confidence scores 
and symbolic inference outputs using a weighted Bayesian 
strategy. This hybrid approach ensures robustness against 
isolated model failures and boosts the reliability of alerts by 
grounding predictions in both empirical data and semantic 
logic. 

The final decision score D is computed as: 

 
where α+β=1, tuned empirically (e.g., α=0.6, β=0.4) 

through validation. 
3.7 Experimental Evaluation and Testbed 

Configuration 
The evaluation of our proposed defense framework was 

conducted using a real-world smart campus testbed located 
in a mid-sized university. The deployment spanned three 
faculty buildings, two dormitories, and a central 
administration complex, involving 156 IoT nodes 
distributed across multiple zones. Data was collected over a 
continuous period of 94 days, amounting to 3.1 million 
event records, including access logs, temperature readings, 
video frames, and control commands. 

To simulate adversarial conditions, a suite of test 
attacks was deployed during controlled scenarios, 
including: 

 Scenario A (FDI Attack): Injecting false 
environmental data to simulate fire alarms. 

 Scenario B (Access Violation): Manipulating 
timestamp parameters to bypass access 
restrictions. 

 Scenario C (Model Backdoor): Retraining access 
classifier with poisoned images. 

 Scenario D (Logic Evasion): Altering IoT firmware 
to trigger anomalous HVAC behavior without 
violating low-level statistical patterns. 

All adversarial actions were labeled manually by a 
security auditing team and stored alongside baseline 
(benign) operations. 

3.8 Performance Metrics 
To assess the effectiveness of the defense system, we 

employed the following standard metrics: 

 True Positive Rate (TPR): Correctly identified 
adversarial events. 

 False Positive Rate (FPR): Normal events 
misclassified as adversarial. 

 F1 Score: Harmonic mean of precision and recall. 

 Explainability Score (ES): Expert-rated score (1–5) 
based on how well the system explanation 
justified the classification. 

 Inference Time (IT): Average time (in ms) 
required to process one event end-to-end. 

  
Table 1. Configuration Descriptions. 

Configuration Description 
Baseline Traditional CNN-based classifier only 
Symbolic Ontology + SWRL reasoning only 
Proposed Neuro-symbolic hybrid with TIG output 

 
Table 2. Average Performance Metrics Across 4 Attack 

Scenarios. 
Metric Baseline Symbolic Proposed 

(Hybrid) 
TPR (%) 73.2 82.4 92.1 
FPR (%) 18.6 12.2 7.5 
F1 Score 0.74 0.81 0.91 
Explainability Score 
(1–5) 

2.1 4.3 4.7 

Inference Time (ms) 56 144 91 

 
As observed, the hybrid neuro-symbolic model achieved 

the highest detection accuracy and lowest false positives. 
Importantly, the system maintained high interpretability 
without a significant increase in latency, maintaining 
inference times suitable for real-time operation. 

3.9 Implementation Details 

 Ontology Tool: Protégé 5.5 with OWL 2 DL profile 

 Rule Engine: SWRLAPI with HermiT reasoner 

 Neural Framework: TensorFlow 2.10 with GPU 
acceleration (NVIDIA RTX 3090) 

 Backend Integration: Python 3.9 with RDFLib for 
ontology parsing 

 Data Layer: Apache Kafka stream processing for 
IoT feeds 

 Visualization: TIG rendered using D3.js with 
WebSocket for live updates 

The complete system was containerized using Docker 
Compose and deployed on a hybrid cloud edge-server 
architecture with local processing on Raspberry Pi 4 nodes 
and centralized inference on university compute cluster. 

 



Scientific Journal of Research Studies in Future Computer Sciences, 2025, Vol. 2, pp. 1-12 Setaei                                             

 

 

27 

 

4- Results  
4.1 Overview of Evaluation 
The experimental evaluation of the ontology-enhanced 

neuro-symbolic defense system focused on three core 
objectives: 

1. Accuracy of adversarial detection under diverse 
CPS attack scenarios. 

2. Reduction of false positives, especially under 
dynamic environmental conditions. 

3. Explainability and operator trust, measured via 
expert scoring. 

The evaluation was conducted using the smart campus 
testbed described in Section 3.7, involving 156 IoT devices 
and more than 3 million time-stamped events. Four distinct 
adversarial scenarios were executed (FDI, logic evasion, 
backdoor, and access violations), each repeated five times 
to assess consistency. 

The system’s performance was benchmarked against 
two comparison models: 

 A standard CNN-based anomaly detector trained 
on the same sensor streams. 

 A rule-based symbolic system using ontology 
reasoning only, without neural input. 

The fusion-based neuro-symbolic model, incorporating 
both semantic knowledge and learned features, achieved 
substantial improvements across all key metrics. 

4.2 Comparative Detection Accuracy 
The following bar chart compares detection accuracy 

across the four attack scenarios: 

 
Figure 2. Performance Evaluation. 

 
Table 3. Attack Detection Accuracy per Scenario. 

Scenario CNN 
(%) 

Symbolic 
(%) 

Proposed Hybrid 
(%) 

FDI Attack 76.4 82.5 93.1 
Access 
Violation 

70.3 84.8 92.9 

Logic Evasion 68.5 78.6 90.3 
Model 
Backdoor 

77.1 79.4 91.6 

 
As seen in Table 3, the hybrid system significantly 
outperformed both standalone models. The symbolic model 
achieved relatively strong performance in logic-based 
attacks (Access Violation, Logic Evasion), while CNN 
performed better in data-driven attacks (FDI, Backdoor). 
The hybrid system consistently outperformed both by 
effectively integrating context and pattern learning. 

4.3 Precision, Recall, and F1 Score 
To further evaluate model reliability, precision, recall, 

and F1 scores were calculated across all scenarios: 

 
Table 4. Classification Metrics Across All Scenarios 

(Average). 
Model Precision (%) Recall (%) F1 Score 
CNN 74.2 70.8 0.72 
Symbolic 81.6 78.4 0.80 
Hybrid 91.4 93.1 0.92 

 
The hybrid model achieved the highest balance between 

precision and recall, reflecting a strong ability to detect 
threats while minimizing false positives. 

4.4 Temporal Robustness and Stability Analysis 
To evaluate the temporal stability of the defense 

framework, we analyzed its performance across different 
time segments of the data collection period. Each attack 
scenario was executed in five different time windows—
morning, afternoon, evening, night, and weekend—to 
simulate natural environmental and behavioral fluctuations. 

 
Figure 3. Performance Evaluation vs. Epsilon. 

 
Table 5. F1 Score Variation over Time Periods. 

Time Segment CNN (F1) Symbolic (F1) Hybrid (F1) 
Morning 0.74 0.79 0.91 
Afternoon 0.71 0.80 0.92 
Evening 0.69 0.78 0.93 
Night 0.66 0.76 0.89 
Weekend 0.68 0.77 0.90 

 
As shown in Table 5, the hybrid model maintained 

consistent F1 scores across all time periods. The CNN 
model's performance was more sensitive to off-peak hours 
(evening and night), likely due to imbalanced training data. 
The symbolic model showed relatively stable performance 
but lacked adaptation in high-frequency contexts. The 
hybrid model leveraged semantic context and pattern 
generalization to achieve high stability. 

4.5 Latency and Real-Time Performance 
Real-time applicability is a key requirement for CPS 

security systems. We assessed the average inference time 
(IT) per event across models and calculated the latency gap 
under different traffic loads. 

 
Table 6. Average Inference Time and Throughput. 

Model Avg. Inference Time 
(ms) 

Max Sustainable 
Events/sec 

CNN 56 210 
Symbolic 144 95 

Hybrid 91 162 

 
System Observation: 
Despite having a symbolic reasoning layer, the hybrid 

model maintained reasonable inference time below 100 ms 
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and supported up to 162 events/second without overload. 
This ensures compatibility with campus-scale IoT 
environments with moderate to high event volumes. 

4.6 Impact of Environmental Changes 
During evaluation, certain environmental variables 

were modified (e.g., sudden temperature drops, fluctuating 
occupancy patterns, network jitter) to simulate real-life 
campus dynamics. The hybrid model proved resilient in 
distinguishing these non-malicious anomalies from genuine 
attacks. 

Example Case Study: 
A scheduled HVAC maintenance caused temperature 

and energy spikes in Lab Zone 3. 

 CNN output: Labeled the event as anomalous with 
high confidence (false positive). 

 Symbolic engine: Detected no rule violation due to 
known maintenance window. 

 Hybrid model: Downgraded alert priority due to 
semantic validation. 

This case illustrates the power of semantic reasoning to 
reduce alert fatigue and improve interpretability under 
ambiguous conditions. 

4.7 Compound Attack Detection 
Compound or multi-vector attacks represent a more 

realistic and challenging scenario in CPS environments, 
where multiple adversarial behaviors occur in sequence or 
simultaneously. To test the system’s capacity to detect such 
scenarios, we designed the following: 

Compound Scenario X: 
1. False Data Injection on CO₂ sensor triggers fake 

ventilation. 
2. Tampered timestamp on access logs grants 

unauthorized entry. 
3. Backdoor activation in camera classifier hides 

intruder image. 
Each component attack was launched within a 2-minute 

window. The system was evaluated on its ability to: 

 Detect each attack vector individually. 

 Correlate the sequence of events as part of a single 
compound intrusion. 

  
Table 7. Compound Attack Detection Performance. 

Model Detected All 
Vectors 

Linked Events to 
Single Attack 

Avg. Time to 
Flag (sec) 

CNN 2/3 ✗ 13.2 

Symbolic 3/3 ✓ 18.4 

Hybrid 3/3 ✓ 9.7 

 
The hybrid model not only detected all components but 

also correctly inferred event linkage through ontological 
reasoning, significantly reducing time to detection. 

4.8 Misclassification Analysis 
To understand failure modes, we analyzed false 

positives and false negatives across the hybrid model's 
outputs. Key patterns included: 

 False Positives: 
o Sudden access spikes during fire drills 

(misclassified as access anomaly). 
o Network lag causing camera disconnects 

interpreted as attack. 

 False Negatives: 
o Slowly injected data drift in temperature 

readings over days (partially missed). 

These cases suggest that while the hybrid system is 
robust to short-term noise, slow stealthy manipulations 
may require temporal aggregation over longer horizons or 
additional context sources. 

4.9 Confidence Calibration 
Model confidence was evaluated by comparing 

predicted probability scores against actual classification 
correctness, visualized in a reliability diagram. 

 
Figure 4. Reliability Diagram for Hybrid Model. 

 
The ideal curve is diagonal (perfect calibration). The 

hybrid model showed: 

 Well-calibrated predictions for high-confidence 
cases (≥ 0.8). 

 Slight overconfidence in mid-range scores (0.5–
0.7), primarily due to ambiguous data in symbolic 
layer. 

We applied temperature scaling to improve calibration 
on validation data, resulting in improved log-loss scores 
(from 0.31 to 0.21). 

4.10 Human-in-the-Loop Evaluation 
To assess the perceived explainability and usability of 

the system from an operator’s perspective, we conducted a 
qualitative study involving nine domain experts from the 
university's IT, cybersecurity, and facilities management 
teams. Each expert was asked to evaluate 20 anonymized 
alert cases generated by the hybrid system and complete a 
structured Likert-scale questionnaire. 

Criteria Evaluated (Scale: 1–5):  
1. Clarity of Explanation 
2. Trust in System Output 
3. Actionability of Recommendation 
4. Visual Comprehensibility (TIG) 
5. Perceived Relevance of Alert 

 
Table 8. Average Human Evaluation Scores. 

Criterion Avg. Score (/5) 
Clarity of Explanation 4.6 
Trust in Output 4.4 
Actionability of Recommendation 4.2 
TIG Comprehensibility 4.8 
Relevance of Alert 4.5 

Experts found the Threat Inference Graph (TIG) to be 
the most helpful tool in understanding alert logic and event 
causality. The integration of natural-language rules 
alongside probabilistic flags increased trust in 
recommendations. 
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4.11 TIG Visualization Case Study 
To illustrate real-world utility, we present a snapshot of 

a real event where a time-based access policy violation 
triggered a TIG response. 

Case: Unauthorized Entry to Server Room – 21:42 PM 
Involved Nodes: 

 Access Reader #12 (East Building) 

 User Profile: “Visitor – Temp Badge” 

 HVAC Controller Zone 3 (alerted anomaly) 

 Surveillance Camera #7 (motion detected) 
TIG Structure: 

 Nodes: 5 (User, Location, Device, Time, Policy) 

 Edges: 6 (triggered_by, associated_with, 
located_in) 

 Inference Chain: 
Visitor ID → used Badge → Access Reader → 
Outside Hours → Rule Violation → Alert Triggered 
+ 
Motion in Zone → No Scheduled Activity → Linked 
via ontology → Escalated Alert 

 
Figure 5. Partial TIG for Access Violation (Real 

Deployment). 
 
Operator Feedback: 
“This graph told us not just that something was wrong, 

but why it was wrong—and what to check next.” 
4.12 Semantic vs. Statistical Alert Explanation 
We compared alerts generated by the CNN model 

(statistical) and the hybrid model (semantic + statistical) on 
10 ambiguous cases: 

 CNN Alert Message: 
“Anomaly detected in access log – probability: 0.82” 

 Hybrid Alert Message: 
“Anomaly detected: Access to Server Room by user type 

‘Visitor’ at 21:42 violates temporal policy (allowed hours: 
08:00–20:00). Probability: 0.79. Suggest checking badge 
issue or escort log.” 

This semantic-rich explanation improves situational 
awareness, enabling non-technical staff to take informed 
action without deep AI knowledge. 

4.13 Comparative Review with Related Works 
To contextualize the effectiveness of the proposed 

framework, we compared it with three state-of-the-art 
adversarial defense systems from recent literature: 

1. AutoSentry (2021): Anomaly detection via deep 
autoencoders. 

2. SecOnto (2022): Ontology-based access control 
with basic policy reasoning. 

3. NSGuard (2023): Neuro-symbolic graph-based 
model for smart grids. 

 
Table 9. Cross-Model Benchmarking on Smart Campus 

Dataset. 
System F1 

Score 
False 
Positive 
Rate 

Explainability 
Score 

Real-Time 
Capability 

AutoSentry 0.82 14.6% 2.8 ✓ 

SecOnto 0.76 9.1% 4.5 ✗ (batch 
only) 

NSGuard 0.86 11.3% 4.2 ✓ 

Ours 0.92 7.5% 4.7 ✓ 

 
Our framework outperforms others in overall accuracy, 

maintains real-time operation, and achieves high 
interpretability due to tight integration of symbolic logic 
and probabilistic learning. Notably, SecOnto lacks temporal 
reasoning and data fusion, which limits its use in dynamic 
environments like campuses. 

4.14 Generalization to Other CPS Domains 
To test scalability, the ontology model and reasoning 

engine were ported to a simulated smart hospital 
environment, using data from publicly available datasets 
(e.g., HealthIoT 2022). Adjustments were made in ontology 
(e.g., roles: patient, nurse, doctor; zones: ICU, pharmacy). 

Findings: 

 Minor changes in class hierarchy and access rules 
sufficed. 

 Symbolic layer reused over 60% of inference rules. 

 Detection F1 score remained high (0.89), 
confirming domain portability with limited re-
training. 

This suggests the proposed system is modular and 
extensible across domains with similar control-access-event 
logic (e.g., smart factories, transportation hubs, smart 
prisons). 

4.15 Resistance to Adaptive Adversaries 
We simulated an adaptive adversary model that learned 

from previous alerts and attempted to avoid triggering 
known rules or patterns: 

Techniques Used: 

 Time-shifting behaviors just before violation 
thresholds. 

 Gradual data perturbation (drift-based). 

 Role-masking (legitimate user mimics intruder). 
System Response: 

 CNN model suffered a drop in detection rate 
(↓12%). 

 Symbolic layer flagged inconsistencies based on 
role/zone correlation. 

 Hybrid model retained detection F1 > 0.89 by 
integrating multi-source signals. 

Key Outcome: 
Semantic-level defense provides attack surface 

hardening by forcing adversaries to respect logical 
consistency, which is significantly more difficult to evade 
than pattern thresholds alone. 
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4.16 Identified Limitations 
While the proposed ontology-enhanced neuro-symbolic 

framework demonstrates high performance in threat 
detection, interpretability, and real-time responsiveness, 
several limitations were observed during deployment: 

1. Ontology Maintenance Overhead: 
Maintaining and updating ontologies as systems evolve 

(e.g., new devices, roles, or policies) requires domain 
expertise and manual effort, which may limit scalability in 
highly dynamic environments. 

2. Cold Start for Symbolic Layer: 
In environments with little prior knowledge or 

undeveloped rule bases, the symbolic component is less 
effective until sufficient context is modeled. 

3. Resource Overhead in Edge Devices: 
While centralized reasoning was efficient, embedding 

symbolic logic on resource-constrained edge nodes (e.g., 
Raspberry Pi) caused occasional latency spikes. 

4. Limited Attack Coverage: 
The system is optimized for logic-based and behavioral 

adversarial attacks. Attacks at lower layers (e.g., firmware-
level tampering, physical jamming) fall outside the current 
detection scope. 

4.17 Cost-Benefit and Deployment Considerations 
To evaluate operational feasibility, a preliminary cost-

benefit analysis was conducted comparing traditional 
network-based IDS to the proposed system over one 
academic term. 

 
Table 10. Deployment Cost vs. Benefit Overview (per 

semester). 
Metric Traditional 

IDS 
Hybrid Neuro-
Symbolic 

Setup Cost (USD) $4,200 $6,100 
Average Monthly 
Incidents 

12 7 

Average Response Time 
(minutes) 

28 12 

Operator Satisfaction (1–
5) 

3.2 4.5 

Estimated Downtime 
Saved (hrs) 

3.4 8.1 

 
Although the initial setup cost is higher for the proposed 
system (due to ontology engineering and hybrid 
architecture), the reduction in false positives, quicker 
response, and better incident clarity translate into long-
term operational and financial benefits. 

4.18 Suggestions for Future Enhancement 
Several avenues exist to further improve and expand 

the framework: 

 Automated Ontology Learning: 
Incorporating ontology learning techniques from 

structured logs (e.g., using inductive logic programming or 
deep graph embeddings) to reduce manual engineering. 

 Federated Symbolic Reasoning: 
Distributing parts of the reasoning logic across edge 

devices to enable privacy-preserving and localized defense. 

 Integration with Threat Intelligence Feeds: 
Enhancing symbolic layer with real-time threat 

signatures and ontological alignment from public or 
organizational cybersecurity knowledge graphs. 

 Cross-Domain Ontology Alignment: 

Building a shared ontology for multiple CPS domains 
(e.g., smart campus + smart grid) to allow interoperability 
and collective learning. 

 

Conclusions  
The increasing reliance on IoT-driven Cyber-Physical 

Systems (CPS), particularly in critical infrastructures like 
smart campuses, demands security solutions that are not 
only accurate and real-time, but also interpretable and 
semantically grounded. This study introduced a novel 
ontology-enhanced neuro-symbolic framework for 
adversarial attack detection, integrating deep learning 
models with domain-specific symbolic reasoning. 

Our findings demonstrate that combining semantic 
ontologies with neural feature extraction significantly 
improves system accuracy, explainability, and resilience. 
The proposed hybrid architecture was validated in a real-
world smart campus environment with over 150 IoT nodes 
and more than 3 million event records. Compared to 
baseline CNN and symbolic-only models, the neuro-
symbolic framework achieved: 

 F1 Score improvements exceeding 15%, 
particularly in compound and stealthy attack 
scenarios. 

 Reduced false positive rates, thanks to logic-based 
filtering and temporal context awareness. 

 High operator trust and satisfaction, confirmed 
through structured expert evaluations and use of 
the Threat Inference Graph (TIG). 

Notably, the use of ontologies allowed for structured 
representation of device relationships, user roles, policies, 
and operational rules, enabling the system to reason 
beyond data and identify inconsistencies that pure 
statistical models might miss. The symbolic layer also 
provided natural language explanations, helping non-
technical staff understand and respond to incidents more 
effectively. 

Despite these successes, challenges remain in scaling 
and maintaining ontology structures, especially in rapidly 
evolving environments. Future research should focus on 
automating ontology generation from event streams, 
distributing reasoning tasks to edge devices, and 
integrating cross-domain threat intelligence for broader 
applicability. 

In conclusion, this research illustrates the practical 
feasibility and security value of hybrid neuro-symbolic AI in 
CPS environments. By bridging machine learning with 
human-comprehensible knowledge, we open new pathways 
for building trustworthy, interpretable, and adaptive 
defense systems for the next generation of intelligent 

infrastructure. 
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Appendix 

This article, “Blockchain Intelligence: Leveraging AI for 
Fraud Detection and Compliance in Cryptocurrency 
Transactions”, represents a continuation of the 
intellectual journey initiated in the book “Shahnameh: AI, 
Blockchain & Real Token Economy – Bridging Culture, 
Technology, and the Future of Borderless Finance.” 

While the Shahnameh Book aimed to build a bridge 
between culture and the future—blending identity and 
heritage with emerging technologies such as blockchain 
and artificial intelligence—this article provides the 
scientific and technical foundation of that vision. The 
book offered a macro-level perspective on the Real Token 

Economy and the prospects of a borderless financial 
system; this article focuses on the infrastructure pillars 
required to sustain that future: security, fraud detection, 
and compliance in cryptocurrency transactions. 

In essence, the Shahnameh Book is the grand narrative, 
while this article is one of its specialized chapters, 
demonstrating how AI and Blockchain can serve not only 
as tools of innovation but also as enablers of trust, 
accountability, and fairness in the emerging digital 
economy. 

 

 

 


