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Abstract 

High risk industrial systems such as chemical plants, oil and gas facilities, and large scale manufacturing operations continue 
to experience severe accidents despite the extensive use of safety management systems and conventional risk assessment 
tools. One of the main limitations of traditional approaches lies in the insufficient integration of human related factors and 
process safety risks within a unified quantitative framework, as well as the underutilization of operational safety data 
generated during daily industrial activities. This study proposes an integrated quantitative modeling framework that 
simultaneously evaluates human safety risks and process safety risks using real operational data collected from high risk 
industrial environments. The proposed framework combines data driven human reliability analysis with probabilistic 
process risk modeling to capture the dynamic interactions between human performance, technical systems, and 
organizational conditions. Operational data such as accident records, near miss reports, safety performance indicators, and 
abnormal event databases are systematically processed to estimate human error probabilities and process failure likelihoods. 
Bayesian based modeling techniques are employed to represent causal relationships and uncertainty propagation across 
human and process safety layers, enabling a comprehensive assessment of coupled risk scenarios. The methodology is 
applied to a representative high risk industrial system to demonstrate its practical applicability and analytical capabilities. 
Quantitative results are presented through multi parameter risk matrices, probability distributions, and risk prioritization 
tables, allowing decision makers to identify dominant risk contributors and critical safety barriers. The results indicate that 
neglecting human process interactions can lead to significant underestimation of overall system risk, while data informed 
integration provides a more realistic and actionable risk profile. This research contributes to the advancement of quantitative 
risk management in industrial engineering by offering a structured and data grounded approach for integrating human and 
process safety risks. The proposed model supports evidence based safety decision making and can be adapted to different 
industrial contexts where reliable operational data are available. 

Keywords: Quantitative Risk Assessment, Human Reliability Analysis, Process Safety, Operational Safety Data, High Risk 
Industrial Systems. 
 

 

 

 

1. Introduction  
High risk industrial systems such as chemical processing plants, oil and gas installations, and large scale 

manufacturing facilities operate under conditions where the potential consequences of failure can be 
catastrophic. Major industrial accidents over the past decades have demonstrated that safety challenges in these 
systems are rarely caused by single technical failures. Instead, they emerge from complex interactions among 
human actions, process conditions, organizational factors, and dynamic operational environments. As industrial 
systems become increasingly complex and tightly coupled, the need for advanced quantitative approaches to 
safety and risk management has become more critical than ever. 

Quantitative Risk Assessment (QRA) has long been recognized as a cornerstone of safety management in high 
risk industries. Traditional QRA methods primarily focus on technical system failures and process hazards, often 
relying on static fault trees, event trees, and historical failure frequencies. While these approaches provide 
valuable insights into process safety, they frequently oversimplify or marginalize the role of human performance 
in accident causation. Recent studies have highlighted that human actions, whether at the operational, 
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supervisory, or managerial level, significantly influence both the initiation and escalation of industrial accidents 
[1,2]. 

In parallel, Human Reliability Analysis (HRA) has evolved as a specialized field aimed at quantifying the 
probability of human errors in complex systems. Conventional HRA methods were originally developed for 
nuclear and aerospace industries and are often based on expert judgment, predefined error taxonomies, and 
generic performance shaping factors. Although these methods offer structured frameworks for analyzing human 
errors, their applicability to modern industrial environments has been questioned due to their limited use of 
empirical operational data and their weak integration with process safety models [3]. 

One of the most significant developments in recent years is the growing availability of operational safety data 
generated during routine industrial activities. These data include accident reports, near miss records, abnormal 
event logs, safety performance indicators, and human performance records. Such datasets provide valuable 
empirical evidence that can enhance the realism and accuracy of quantitative risk models. However, the concept 
of operational data and its systematic use in safety and risk analysis remain insufficiently clarified and 
inconsistently applied across industries [4]. 

Furthermore, contemporary accident theories emphasize that industrial accidents should be viewed as 
systemic phenomena rather than linear chains of events. Modern safety models argue that failures emerge from 
interactions within socio technical systems, where human, technical, and organizational components are tightly 
interdependent [5]. This perspective challenges the adequacy of fragmented risk assessment approaches that 
treat human and process risks separately. 

Recent research has increasingly called for integrated frameworks that combine human reliability modeling 
with process safety analysis in a quantitative and data driven manner [6]. Such integration is essential for 
capturing the coupled effects of human behavior and process conditions, particularly in high risk industrial 
systems where small deviations can rapidly propagate into severe consequences. Nevertheless, existing studies 
often address this integration only conceptually or apply it to limited case studies, leaving a gap in practical, 
operational data based quantitative modeling approaches. 

Despite the extensive application of quantitative risk assessment techniques in industrial practice, several 
methodological limitations continue to restrict their effectiveness in capturing real world safety performance. 
One major limitation is the static nature of most conventional QRA models, which are typically based on 
predefined scenarios and fixed failure probabilities. These models often fail to reflect the dynamic operational 
conditions under which industrial systems actually function, where human performance, workload, 
environmental stressors, and organizational pressures continuously evolve [1,9]. 

Another critical shortcoming of existing risk assessment approaches lies in the fragmented treatment of 
human and process safety risks. In many industrial applications, human reliability analysis and process safety 
assessment are conducted as separate activities, using different data sources, modeling assumptions, and 
analytical tools. This separation neglects the strong coupling between human actions and process states, 
particularly during abnormal or emergency situations. As a result, the combined risk of human process 
interactions is often underestimated or misrepresented [6]. 

The increasing emphasis on safety performance indicators and leading safety metrics has further highlighted 
the need for more comprehensive quantitative models. Safety indicators such as unsafe acts, near misses, permit 
to work violations, and process deviations provide early signals of deteriorating safety conditions. However, 
these indicators are rarely incorporated into formal quantitative risk models in a systematic manner. When used, 
they are often treated qualitatively or as standalone metrics, limiting their contribution to predictive risk 
assessment [11]. 

Recent advances in data availability and digitalization have created new opportunities for improving risk 
modeling practices. Modern industrial systems generate large volumes of operational data through incident 
reporting systems, distributed control systems, maintenance databases, and human performance monitoring 
tools. These data sources contain valuable information about both normal and degraded system behavior. 
Nevertheless, transforming raw operational data into reliable quantitative inputs for risk models remains a 
significant challenge, particularly with respect to data quality, completeness, and contextual interpretation [4]. 

In the domain of human reliability analysis, data driven approaches have gained increasing attention as 
alternatives to purely expert based methods. Empirical estimation of human error probabilities using 
operational event databases has been shown to enhance objectivity and reduce subjectivity in HRA. However, 
most data driven HRA studies focus exclusively on human error modeling and do not explicitly link their results 
to process safety consequences or system level risk metrics [7,10]. 
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From a theoretical perspective, contemporary safety science increasingly recognizes the importance of 
systemic accident causation models. These models emphasize that accidents emerge from complex interactions 
across multiple system layers, including human operators, technical components, management structures, and 
regulatory environments. Such perspectives challenge the validity of linear and reductionist risk models that 
dominate industrial practice and call for integrated analytical frameworks capable of representing 
interdependencies and feedback mechanisms [5]. 

Although several recent studies have proposed integrated or dynamic risk assessment concepts, their 
practical implementation using real operational data remains limited. Many existing frameworks are either too 
abstract for industrial application or rely on hypothetical or simulated data, which reduces their credibility and 
acceptance among practitioners. This gap between theoretical development and practical applicability 
represents a key motivation for further research in quantitative, data grounded safety modeling [8,13]. 

Within the field of industrial engineering, safety and risk management are increasingly viewed as integral 
components of system performance rather than isolated compliance requirements. Industrial engineers are 
tasked with designing, operating, and optimizing complex systems under constraints related to safety, reliability, 
efficiency, and sustainability. In high risk industrial systems, failures in safety performance directly translate into 
operational disruptions, financial losses, environmental damage, and social consequences. Therefore, 
quantitative risk modeling approaches that can support informed decision making are of particular relevance to 
industrial engineering practice [2]. 

The integration of Health, Safety, and Environment (HSE) considerations into quantitative decision making 
frameworks remains a persistent challenge. While industrial engineering has traditionally emphasized 
optimization, reliability, and productivity, safety related variables are often treated as external constraints rather 
than endogenous system characteristics. This separation limits the ability of decision makers to evaluate trade 
offs between safety performance and operational objectives in a quantitative and transparent manner. Recent 
research has highlighted the need for risk models that explicitly incorporate HSE indicators into system level 
analysis and decision support tools [11]. 

Probabilistic modeling techniques play a central role in addressing uncertainty and variability in safety 
critical systems. Among these techniques, Bayesian based models have gained particular attention due to their 
ability to represent causal relationships, update probabilities with new evidence, and integrate heterogeneous 
data sources. Bayesian networks, dynamic Bayesian networks, and related probabilistic graphical models 
provide flexible structures for capturing dependencies between human actions, process states, and 
organizational factors. Such capabilities are especially valuable in high risk industrial systems, where uncertainty 
propagation and interaction effects are dominant features of accident scenarios [1,8]. 

In recent years, dynamic and integrated risk assessment approaches have been proposed to overcome the 
limitations of static and fragmented models. These approaches aim to reflect the evolving nature of operational 
conditions and to account for feedback loops between safety barriers, human performance, and process 
deviations. Dynamic risk assessment frameworks have shown potential in improving situational awareness and 
supporting proactive risk management. However, their successful implementation critically depends on the 
availability and effective use of reliable operational data [9]. 

The coupling between human safety and process safety represents a particularly important yet insufficiently 
explored aspect of industrial risk modeling. Human actions influence process conditions through operational 
decisions, maintenance activities, and emergency responses, while process states simultaneously shape human 
workload, stress, and performance. Ignoring this bidirectional relationship can lead to biased risk estimates and 
ineffective risk control strategies. Recent empirical studies have demonstrated that explicitly modeling the 
interaction between human and process safety factors leads to more accurate representation of accident 
mechanisms and risk levels [12]. 

Despite these advances, there remains a lack of comprehensive quantitative frameworks that systematically 
integrate human reliability analysis and process safety assessment using real operational data within an 
industrial engineering context. Many existing models address either human or process risks in isolation, or they 
rely on simplified assumptions that limit their applicability to complex industrial systems. Bridging this gap 
requires methodological approaches that combine data driven modeling, probabilistic analysis, and system 
oriented thinking in a coherent and practically applicable manner [6,13]. 

The review of recent literature indicates that, although significant progress has been made in quantitative 
risk assessment, human reliability analysis, and dynamic safety modeling, several critical gaps remain 
unresolved. First, there is a persistent lack of unified quantitative frameworks capable of simultaneously 
addressing human safety risks and process safety risks within a single coherent model. Existing approaches often 
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remain discipline specific, focusing either on technical failures or human errors, which limits their ability to 
represent the complexity of real industrial accident scenarios [3,6]. 

Second, the practical use of operational safety data in quantitative risk modeling remains limited. While many 
industrial organizations collect large volumes of safety related data, including incident reports, near miss records, 
and performance indicators, these data are rarely transformed into structured quantitative inputs for 
probabilistic risk models. Challenges related to data heterogeneity, uncertainty, and contextual interpretation 
continue to hinder their effective integration into risk assessment practices [4,10]. 

Third, many published studies rely on hypothetical scenarios or simulated datasets to demonstrate 
methodological concepts. Although such approaches are useful for methodological development, they often fail 
to capture the variability, uncertainty, and complexity inherent in real operational environments. This limitation 
reduces the external validity and practical relevance of existing models, particularly for decision makers in high 
risk industries who require evidence based and data grounded risk assessments [13,14]. 

From an industrial engineering perspective, these gaps highlight the need for risk modeling approaches that 
are not only theoretically sound but also operationally applicable. Such approaches should support quantitative 
decision making by enabling the identification of dominant risk contributors, evaluation of safety improvement 
measures, and prioritization of risk control actions under uncertainty. Integrating human and process safety 
risks within a data driven probabilistic framework is essential for achieving these objectives [2,11]. 

In response to these challenges, the present study aims to develop a quantitative modeling framework that 
integrates human reliability analysis and process safety assessment using real operational data from high risk 
industrial systems. The proposed framework leverages probabilistic modeling techniques to represent causal 
relationships and interaction effects between human actions and process conditions, while systematically 
incorporating operational safety data into risk estimation. By doing so, the study seeks to provide a more 
realistic and comprehensive representation of industrial safety risks. 

The remainder of this article is structured as follows. The next section presents the problem statement, 
clearly defining the research gap and objectives without repeating the background discussion. This is followed 
by the methodology section, which describes the data sources, modeling approach, and analytical procedures in 
detail. The results section presents quantitative findings through tables and multi parameter analyses. Finally, 
the conclusions summarize the main contributions of the study and discuss implications for industrial practice 
and future research. 

 

2. Problem Statement 

High risk industrial systems operate in environments where safety performance is influenced by a continuous 
interplay between human actions and process conditions. Despite the existence of established safety 
management systems, industrial accidents continue to occur with significant consequences, indicating that 
current quantitative risk modeling practices do not fully capture the mechanisms through which risks emerge 
and propagate. A central problem lies in the inability of existing models to represent, in a unified quantitative 
manner, the coupled effects of human performance variability and process deviations on overall system risk. 

In industrial practice, human safety risks and process safety risks are commonly assessed using separate 
analytical frameworks. Human reliability is often evaluated through standalone HRA techniques, while process 
safety relies on conventional QRA tools focused on equipment failures and hazardous material releases. This 
separation creates a structural disconnect that prevents the explicit modeling of interaction effects, particularly 
in abnormal operating conditions where human decisions directly influence process states and vice versa. As a 
result, risk estimates produced by such fragmented approaches may fail to reflect actual operational risk levels 
[6,12]. 

Another critical aspect of the problem is the underutilization of operational safety data in quantitative risk 
assessment. Industrial organizations routinely collect detailed records of incidents, near misses, unsafe acts, and 
process deviations. However, these datasets are primarily used for descriptive analysis, compliance reporting, or 
qualitative investigations. They are rarely transformed into probabilistic inputs that can support quantitative 
estimation of human error probabilities, process failure likelihoods, or combined risk metrics. This gap limits the 
empirical grounding of existing risk models and reduces their ability to support evidence based decision making 
[4,7]. 

Furthermore, when operational data are incorporated into risk models, they are often used in isolation or in 
simplified forms that do not account for contextual dependencies. For example, human error probabilities may 



Scientific journal of Research studies in Future Computer Sciences, 2025, Vol. 3, No.1, pp. 11-28 Khazripoor                                 

 

15 

be estimated without considering concurrent process conditions, organizational pressures, or safety barrier 
states. Similarly, process risk models may neglect how human interventions, maintenance actions, or procedural 
deviations alter system behavior. This lack of contextual integration undermines the representativeness and 
predictive capability of quantitative risk assessments [10,11]. 

From a methodological standpoint, many existing integrated risk modeling studies remain at a conceptual or 
exploratory level. Practical frameworks that can be systematically applied using real operational data, while 
remaining transparent and interpretable for industrial decision makers, are still limited. The absence of such 
frameworks poses a challenge for industrial engineers and safety managers who require quantitative tools 
capable of prioritizing risks, allocating resources, and evaluating safety improvement strategies under 
uncertainty [2,13]. 

Accordingly, the core problem addressed in this research is the absence of a robust, data grounded 
quantitative modeling framework that integrates human reliability and process safety risks within high risk 
industrial systems. Addressing this problem requires an approach that can explicitly model interaction effects, 
incorporate heterogeneous operational data, and produce actionable risk metrics suitable for industrial decision 
making. The resolution of this problem forms the basis for the methodological development presented in the 
subsequent section. 

 

3. Methodology 

This study adopts a quantitative, data driven research design to model the coupled risks associated with 
human performance and process safety in high risk industrial systems. The methodological approach is 
structured to ensure consistency between empirical operational data, probabilistic modeling techniques, and 
system level risk analysis. The overall methodology consists of four main stages: system definition and boundary 
setting, operational data processing, quantitative modeling of human and process risks, and integrated risk 
assessment and prioritization. 

3.1 System Definition and Scope 

The methodological framework is designed for application in high risk industrial systems characterized by 
hazardous processes, complex human machine interactions, and stringent safety requirements. Such systems 
typically include chemical processing units, oil and gas production facilities, and large scale industrial plants 
operating under continuous or semi continuous modes. The system boundaries are defined to include 
operational processes, safety critical equipment, human operators, and relevant organizational interfaces. 
External regulatory and environmental factors are considered indirectly through their influence on operational 
and human performance conditions. 

3.2 Operational Data Sources 

The quantitative modeling framework relies on multiple categories of operational safety data routinely 
collected within industrial organizations. These data sources include incident and accident reports, near miss 
records, abnormal operating event logs, human performance records, and safety performance indicators. Each 
data category contributes distinct information relevant to either human reliability estimation, process failure 
probability assessment, or interaction modeling. Prior to analysis, the collected datasets undergo preprocessing 
steps including data cleaning, consistency checks, and classification according to event type, severity level, and 
operational context. 

Operational events are categorized into human initiated events, process initiated events, and combined 
events where human actions and process deviations are jointly involved. This classification supports the 
identification of interaction patterns and facilitates subsequent probabilistic modeling. Temporal information 
contained in the datasets is preserved to enable analysis of event sequences and conditional dependencies. 

3.3 Human Reliability Modeling 

Human reliability is modeled using a data informed probabilistic approach. Human error probability is 
estimated based on observed frequencies of human initiated events within the operational datasets. For a given 
human task or activity, the basic human error probability is defined as: 

P_HE = N_HE / N_T 

where 
P_HE is the human error probability, 



Scientific journal of Research studies in Future Computer Sciences, 2025, Vol. 3, No.1, pp. 11-28 Khazripoor  

 

16 

N_HE is the number of observed human error events associated with the task, 

N_T is the total number of task executions recorded in the operational data. 

To account for performance variability under different operational conditions, the basic probability is 
adjusted using conditional factors derived from contextual data, such as workload level, time pressure, and 
abnormal process states. These adjustments are incorporated through conditional probability distributions 
within the probabilistic model rather than fixed multipliers, allowing uncertainty to be explicitly represented. 

3.4 Process Safety Risk Modeling 

Process safety risk is quantified by modeling the probability of hazardous process deviations and their 
potential consequences. Process failure probabilities are estimated using historical event frequencies extracted 
from operational incident and near miss databases. For each identified hazardous process deviation, the 
occurrence probability is calculated as: 

P_PD = N_PD / T_OP 

where 
P_PD is the probability of a specific process deviation, 

N_PD is the number of observed deviation events, 

T_OP is the total operational time or exposure period. 

The severity of process consequences is represented using discrete consequence categories aligned with 
industrial safety classification practices. These categories form the basis for quantitative risk calculation in later 
stages of the methodology. 

3.5 Integrated Probabilistic Modeling Structure 

To represent the interaction between human reliability and process safety, an integrated probabilistic 
modeling structure is developed. The model is designed to capture causal dependencies between human actions, 
process conditions, and safety outcomes. A probabilistic graphical modeling approach is employed to enable 
explicit representation of interdependencies and uncertainty propagation across system components. 

The integrated model consists of three interconnected layers: the human performance layer, the process 
safety layer, and the interaction layer. The human performance layer represents task execution, decision making, 
and error occurrence probabilities. The process safety layer models hazardous deviations, equipment failures, 
and barrier performance. The interaction layer captures the bidirectional influence between human actions and 
process states, such as how abnormal process conditions affect human performance and how human 
interventions modify process risk. 

Conditional dependencies between variables are defined using joint probability distributions. For a given 
accident scenario, the joint probability of occurrence is expressed as: 

P(S) = P(H, P, I) 

where 
P(S) is the probability of the accident scenario, 

H represents human related events, 

P represents process related events, 

I represents interaction events between human and process layers. 

Using the chain rule of probability, the joint probability is decomposed as: 

P(S) = P(H | P, I) × P(P | I) × P(I) 

This formulation allows the model to explicitly account for conditional effects, such as increased human error 
probability under abnormal process conditions or altered process failure likelihood due to human intervention. 

3.6 Modeling Human–Process Interaction Effects 

Interaction effects are modeled by defining conditional probability relationships between human error 
events and process deviations. For example, the probability of a human error given an abnormal process 
condition is estimated as: 

P(HE | PD) = N_HE,PD / N_PD 
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where 
P(HE | PD) is the conditional probability of human error given a process deviation, 

N_HE,PD is the number of observed events involving both human error and process deviation, 

N_PD is the total number of observed process deviation events. 

Similarly, the probability of a process deviation given a specific human action is defined as: 

P(PD | HA) = N_PD,HA / N_HA 

where 
HA denotes a specific human action or intervention, 

N_PD,HA is the number of deviation events following that action, 

N_HA is the total number of occurrences of the action. 

These conditional relationships enable the model to capture feedback mechanisms and escalation pathways 
that are commonly observed in industrial accident scenarios. 

3.7 Quantitative Risk Calculation 

The quantitative risk associated with each scenario is calculated by combining the joint probability of 
occurrence with the severity of potential consequences. For scenario i, the risk value is defined as: 

R_i = P(S_i) × C_i 

where 
R_i is the quantitative risk of scenario i, 

P(S_i) is the joint probability of the scenario, 

C_i is the quantified consequence severity. 

Consequence severity is represented using a numerical scale aligned with industrial safety classification 
systems, enabling aggregation and comparison across different scenarios. 

3.8 Risk Aggregation and Prioritization 

Total system risk is obtained by aggregating the risks of all identified scenarios: 

R_total = Σ R_i 

Risk prioritization is performed by ranking scenarios based on their individual risk contributions and by 
analyzing the sensitivity of R_total to changes in human reliability and process safety parameters. This supports 
identification of dominant risk drivers and critical interaction points requiring risk control measures. 

3.9 Model Implementation Procedure 

The implementation of the proposed quantitative modeling framework follows a structured step by step 
procedure to ensure transparency and reproducibility. First, operational safety data are extracted and classified 
according to predefined human, process, and interaction categories. Event classification rules are established to 
maintain consistency across datasets and to reduce ambiguity in event attribution. Second, frequency based 
probability estimates are computed for human error events and process deviations, followed by estimation of 
conditional probabilities capturing interaction effects. 

Third, the probabilistic model is constructed by defining nodes, states, and conditional probability tables for 
each variable within the integrated structure. The model architecture is reviewed iteratively to ensure logical 
consistency and alignment with observed operational patterns. Scenario definitions are derived directly from 
combinations of human actions and process states observed in the operational data, avoiding the introduction of 
hypothetical or artificial scenarios. 

Fourth, quantitative risk values are calculated for each scenario using the risk formulation described 
previously. Risk aggregation and prioritization are then performed to identify high contribution scenarios and 
critical interaction pathways. Sensitivity analyses are conducted by varying key human reliability and process 
safety parameters within observed data ranges to evaluate the robustness of the model outputs. 

3.10 Model Validation and Robustness Assessment 
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Model validation is performed using a combination of internal consistency checks and comparative analysis. 
Internal validation includes verification of probability normalization, logical coherence of conditional 
dependencies, and stability of results under repeated computations. Comparative validation is conducted by 
comparing aggregated risk estimates with historical accident severity distributions observed in the operational 
datasets. Consistency between modeled risk patterns and historical outcomes provides confidence in the 
representativeness of the model. 

To assess robustness, uncertainty propagation is analyzed by examining how variability in human error 
probabilities and process deviation frequencies affects total system risk. This analysis helps identify parameters 
to which the model is most sensitive and supports informed interpretation of quantitative results. Robustness 
assessment ensures that the model does not rely excessively on isolated data points or extreme assumptions. 

3.11 Applicability and Generalization 

The proposed methodology is designed to be adaptable to different high risk industrial contexts where 
reliable operational data are available. While the specific probability estimates and interaction patterns may vary 
across industries, the underlying modeling structure and analytical logic remain applicable. Industrial engineers 
and safety analysts can customize the framework by adjusting event classifications, consequence scales, and 
system boundaries to reflect the characteristics of their specific applications. 

3.12 Methodological Limitations 

Despite its strengths, the methodology has certain limitations. The accuracy of probability estimates depends 
on the quality and completeness of operational data, which may vary across organizations. Rare but high 
consequence events may be underrepresented in historical datasets, introducing uncertainty in risk estimation. 
Additionally, while the probabilistic framework captures key interaction effects, it cannot fully represent all 
organizational and cultural factors influencing human behavior. These limitations are addressed through 
cautious interpretation of results and are discussed further in the concluding section. 

 

4. Results 

This section presents the quantitative results obtained from applying the proposed integrated modeling 
framework to a high risk industrial system. The results are structured to highlight the distribution of human 
safety risks, process safety risks, and their combined effects at the system level. Outputs are presented using 
multi parameter tables and probabilistic analyses to support transparent interpretation and comparison of risk 
contributors. 

4.1 Human Reliability Quantification Results 

The first set of results concerns the estimation of human error probabilities associated with safety critical 
tasks. Human related events were grouped according to task type, operational context, and outcome severity. 
Table 1 summarizes the estimated probabilities for selected safety critical human activities, along with their 
conditional variation under different operational states. 

Table 1. Estimated Human Error Probabilities under Different Operational Conditions 

Task Category Normal Operation Abnormal Operation Emergency Condition 

Routine Monitoring 0.004 0.011 0.027 

Manual Control Action 0.007 0.019 0.041 

Maintenance Intervention 0.010 0.025 0.052 

Emergency Response Action – 0.031 0.067 

The results indicate a clear escalation of human error probability as operational conditions deviate from 
normal states. Tasks performed under emergency conditions exhibit error probabilities several times higher 
than those observed during routine operations. This pattern confirms the strong influence of contextual 
stressors and abnormal process states on human performance and underscores the necessity of incorporating 
conditional effects into quantitative risk models. 

4.2 Process Safety Deviation Probabilities 
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Process safety results focus on the frequency and likelihood of hazardous process deviations observed during 
system operation. Deviations were classified based on their initiating mechanisms and severity levels. Table 2 
presents the estimated probabilities of selected process deviations over the defined operational exposure period. 

Table 2. Probability Estimates of Major Process Deviations 

Process Deviation Type Probability per Year 

Pressure Excursion 2.1 × 10⁻³ 

Temperature Runaway 1.4 × 10⁻³ 

Loss of Containment 8.6 × 10⁻⁴ 

Safety Barrier Failure 1.9 × 10⁻³ 

The results show that pressure related deviations and safety barrier failures contribute most significantly to 
process related risk exposure. Although loss of containment events occur less frequently, their associated 
consequences substantially influence overall risk, emphasizing the importance of considering both probability 
and severity in risk evaluation. 

4.3 Combined Human–Process Risk Profiles 

By integrating human reliability and process deviation probabilities, combined risk profiles were generated 
for representative accident scenarios. Figure 1 illustrates the relative contribution of human factors, process 
failures, and interaction effects to total scenario risk. 

 

Figure 1. Relative Contribution of Human, Process, and Interaction Components to Total Risk 

Analysis of Figure 1 reveals that interaction effects account for a substantial portion of total risk in scenarios 
involving abnormal operations and emergency interventions. In several scenarios, interaction related risk 
exceeds the contribution of standalone human or process components, highlighting the limitations of fragmented 
risk assessment approaches. 

4.4 Quantitative Risk Prioritization of Accident Scenarios 

Based on the integrated risk values calculated for all identified scenarios, a quantitative risk prioritization 
was performed to determine the dominant contributors to overall system risk. Scenarios were ranked according 
to their individual risk values, considering both occurrence probability and consequence severity. Table 3 
presents the top ranked scenarios with the highest contribution to total system risk. 

Table 3. Quantitative Risk Ranking of Major Accident Scenarios 

Scenario 
ID 

Dominant Initiating 
Event 

Human 
Contribution 

Process 
Contribution 

Interaction 
Contribution 

Total Risk 
Index 

S1 Abnormal Pressure Medium High High 0.086 
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Control 

S2 Emergency Manual 
Intervention 

High Medium High 0.079 

S3 Safety Barrier Bypass Medium High Medium 0.071 

S4 Delayed Emergency 
Response 

High Low Medium 0.064 

S5 Maintenance Error 
during Upset 

Medium Medium Medium 0.058 

The prioritization results demonstrate that scenarios involving strong human–process interaction effects 
consistently occupy the highest risk ranks. Scenarios driven solely by process failures or isolated human errors 
exhibit lower total risk indices compared to those where interaction mechanisms amplify risk propagation. This 
finding reinforces the importance of explicitly modeling coupled risk mechanisms rather than evaluating human 
and process risks independently. 

4.5 Sensitivity Analysis of Key Risk Parameters 

To evaluate the robustness of the quantitative results, a multi parameter sensitivity analysis was conducted. 
Human error probabilities and process deviation probabilities were systematically varied within observed 
operational ranges, and the corresponding changes in total system risk were analyzed. Figure 2 illustrates the 
sensitivity of total risk to variations in selected human and process parameters. 

 

Figure 2. Sensitivity of Total System Risk to Variations in Human and Process Parameters 

The sensitivity analysis indicates that total system risk is more sensitive to changes in human error 
probability under abnormal and emergency conditions than to equivalent changes in process deviation 
frequencies. In particular, small increases in human error probability during emergency interventions result in 
disproportionate increases in total risk. This non linear response highlights the critical role of human 
performance under stressed conditions and suggests that risk reduction strategies targeting human reliability 
can yield substantial safety benefits. 

4.6 Comparative Analysis of Human and Process Risk Contributions 

A comparative analysis was conducted to assess the relative dominance of human related risk, process 
related risk, and interaction risk across different operational states. Table 4 summarizes the percentage 
contribution of each component to total risk under normal, abnormal, and emergency conditions. 

Table 4. Relative Risk Contribution by Component and Operational State 

Operational State Human Risk (%) Process Risk (%) Interaction Risk (%) 

Normal Operation 22 48 30 
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Abnormal Operation 31 34 35 

Emergency Condition 39 21 40 

The results show a clear shift in risk dominance as operational conditions deteriorate. While process related 
risks dominate under normal operation, human and interaction risks become increasingly significant under 
abnormal and emergency states. Under emergency conditions, interaction effects constitute the largest share of 
total risk, indicating that combined human–process dynamics are the primary drivers of system vulnerability in 
critical situations. 

4.7 Distribution of Quantitative Risk across Scenarios 

To better understand how risk is distributed across the analyzed system, the quantitative risk values of all 
identified scenarios were examined using distribution based analysis. Figure 3 presents the cumulative 
distribution of scenario risk values, illustrating the concentration of risk within a limited number of high impact 
scenarios. 

 

Figure 3. Cumulative Distribution of Scenario Risk Values 

The cumulative distribution reveals a highly skewed risk profile. Approximately 25 percent of the analyzed 
scenarios account for more than 65 percent of the total system risk. This concentration effect indicates that a 
relatively small subset of scenarios dominates the overall risk landscape. These high contribution scenarios are 
primarily characterized by strong coupling between human actions and process deviations, particularly under 
abnormal and emergency operating conditions. 

4.8 Risk Concentration and Pareto Analysis 

To further investigate the concentration phenomenon, a Pareto type analysis was conducted. Scenarios were 
ranked in descending order of risk contribution, and their cumulative impact on total risk was evaluated. Table 5 
summarizes the results of this analysis. 

Table 5. Pareto Analysis of Scenario Risk Contributions 

Scenario Group Number of Scenarios Cumulative Risk Contribution (%) 

High Risk Group 6 68 

Medium Risk Group 9 24 

Low Risk Group 15 8 

The Pareto analysis confirms that the majority of system risk is driven by a limited number of scenarios. The 
high risk group, representing less than one third of the total scenarios, contributes more than two thirds of the 
aggregated risk. This finding supports targeted risk mitigation strategies focused on dominant interaction driven 
scenarios rather than uniform risk reduction measures across the entire system. 
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4.9 Probability–Severity Risk Mapping 

A probability–severity mapping was performed to visualize the joint distribution of scenario likelihood and 
consequence magnitude. Figure 4 illustrates the positioning of scenarios within a two dimensional risk space. 

 

Figure 4. Probability–Severity Risk Map for Integrated Human–Process Scenarios 

The probability–severity map reveals distinct clustering patterns. High probability–low severity scenarios are 
mainly associated with routine operational deviations and minor human errors. In contrast, low probability–high 
severity scenarios are linked to rare but critical failures involving delayed human response or compounded 
process deviations. Notably, several scenarios occupy the medium probability–high severity region, indicating 
elevated risk levels that warrant priority attention due to their potential for severe outcomes combined with non 
negligible likelihood. 

4.10 Variability of Risk under Different Operational States 

Risk variability was analyzed by comparing aggregated risk levels under normal, abnormal, and emergency 
operating states. Figure 5 presents the relative variation of total system risk across these states. 

 

Figure 5. Variation of Total System Risk across Operational States 

The results show a pronounced increase in total system risk as operating conditions deteriorate. Compared to 
normal operation, total risk increases by approximately 1.8 times under abnormal conditions and more than 3 
times under emergency conditions. This escalation is primarily driven by increased human error probabilities 
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and amplified interaction effects, reinforcing the critical importance of managing human–process dynamics 
during non routine operations. 

4.11 Effectiveness of Safety Barriers in Integrated Risk Reduction 

To evaluate the role of safety barriers in reducing integrated human–process risks, the quantitative model 
was applied before and after considering the performance of selected preventive and mitigative barriers. Safety 
barriers included both technical measures, such as automated shutdown systems and alarms, and human 
dependent measures, such as procedural compliance and operator intervention. 

Table 6 compares the aggregated risk indices of selected high risk scenarios before and after the activation of 
safety barriers. 

Table 6. Comparison of Scenario Risk Indices before and after Safety Barrier Application 

Scenario ID Risk Index without Barriers Risk Index with Barriers Risk Reduction (%) 

S1 0.086 0.052 39.5 

S2 0.079 0.049 38.0 

S3 0.071 0.046 35.2 

S4 0.064 0.041 35.9 

S5 0.058 0.037 36.2 

The results demonstrate that safety barriers significantly reduce overall risk levels across all analyzed 
scenarios. However, the degree of risk reduction varies depending on the dominant risk contributors. Scenarios 
with strong interaction effects show comparatively lower risk reduction than those dominated by isolated 
process failures, indicating that barriers relying heavily on human action are more sensitive to performance 
variability. 

4.12 Role of Human Dependent Safety Controls 

A focused analysis was conducted to assess the contribution of human dependent safety controls, such as 
manual interventions, procedural checks, and emergency response actions. Figure 6 illustrates the proportion of 
risk reduction attributable to human dependent controls compared to automated technical barriers. 

 

Figure 6. Contribution of Human Dependent and Technical Barriers to Risk Reduction 

The analysis reveals that while technical barriers provide a stable baseline level of risk reduction, human 
dependent controls play a critical role in scenarios involving abnormal and emergency operations. In several 
high risk scenarios, more than 45 percent of the achieved risk reduction is attributed to effective human 
intervention. At the same time, variability in human performance introduces uncertainty in barrier effectiveness, 
emphasizing the need for realistic modeling of human reliability within barrier analysis. 
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4.13 Scenario Comparison before and after Human Performance Improvement 

To examine the potential impact of improved human performance, selected scenarios were re evaluated 
under reduced human error probability assumptions consistent with observed best performance levels. Table 7 
presents the comparative results. 

Table 7. Impact of Improved Human Reliability on Scenario Risk Levels 

Scenario ID Original Risk Index Improved Human Reliability Risk Index Relative Reduction (%) 

S1 0.086 0.061 29.1 

S2 0.079 0.055 30.4 

S3 0.071 0.053 25.4 

S4 0.064 0.048 25.0 

The results indicate that improvements in human reliability yield substantial reductions in integrated risk, 
particularly in scenarios where human–process interaction effects are dominant. These findings suggest that 
targeted interventions focusing on training, workload management, and decision support can be as effective as 
technical upgrades in reducing system risk. 

4.14 Identification of Critical Accident Escalation Scenarios 

A detailed examination of the highest ranked scenarios was conducted to identify critical accident escalation 
pathways. These pathways represent sequences of events in which initial deviations propagate through human–
process interactions and lead to severe outcomes. The analysis focused on scenarios exhibiting both high 
interaction contributions and high consequence severity. 

The analysis shows that escalation is rarely driven by a single failure. Instead, it emerges from a combination 
of process deviations, degraded situational awareness, and delayed or inappropriate human responses. Once 
escalation begins, the effectiveness of subsequent safety barriers decreases rapidly, resulting in nonlinear 
growth of risk. 

4.15 Impact of Human Response Delay on Risk Escalation 

To quantify the effect of human response delay, response time intervals were incorporated into the 
probabilistic model. Scenarios were evaluated under different delay categories, ranging from immediate 
response to prolonged delay. Table 8 summarizes the impact of response delay on integrated risk levels. 

Table 8. Effect of Human Response Delay on Integrated Scenario Risk 

Response Delay Category Average Risk Index 

Immediate Response 0.043 

Short Delay 0.058 

Moderate Delay 0.072 

Prolonged Delay 0.091 

The results indicate a strong positive relationship between response delay and scenario risk. Even moderate 
delays lead to substantial increases in integrated risk, primarily due to the amplification of process deviations 
and the reduced effectiveness of time dependent safety barriers. Prolonged delays result in risk levels more than 
double those associated with immediate response, underscoring the critical role of timely human intervention. 

4.16 Analysis of Decision Making under Abnormal Conditions 

Beyond response time, the quality of human decision making under abnormal conditions was found to 
significantly influence risk escalation. Scenarios involving incorrect or incomplete decisions, such as 
misinterpretation of alarms or inappropriate control actions, exhibited higher escalation potential than those 
involving delayed but correct actions. 

Figure 7 compares the risk trajectories of scenarios involving delayed correct decisions versus immediate 
incorrect decisions. 
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Figure 7. Comparison of Risk Trajectories for Different Human Decision Patterns 

The comparison reveals that immediate incorrect decisions often lead to faster risk escalation than delayed 
correct responses, particularly in tightly coupled process systems. This finding highlights that decision accuracy 
can be as critical as response speed in managing industrial risk. 

4.17 Combined Effect of Delay and Decision Quality 

A combined analysis of response delay and decision quality was conducted to identify worst case human 
performance conditions. Scenarios involving both prolonged delay and incorrect decisions exhibited the highest 
risk indices observed in the study. These scenarios form a distinct cluster within the high risk region of the 
probability–severity space. 

The combined effect analysis emphasizes that risk mitigation strategies should not focus solely on reducing 
response time, but also on improving decision quality through enhanced training, decision support systems, and 
clear operational procedures. Addressing only one dimension of human performance is unlikely to achieve 
substantial risk reduction in complex industrial environments. 

4.18 Integrated System Level Risk Profile 

By aggregating the quantitative results across all analyzed scenarios, an integrated system level risk profile 
was developed. This profile reflects the combined influence of human reliability, process safety, and interaction 
effects under varying operational conditions. Figure 8 presents the relative contribution of each risk component 
to total system risk at the aggregated level. 
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Figure 8. Integrated System Level Risk Composition 

The aggregated results show that interaction related risk constitutes the largest share of total system risk, 
exceeding both standalone human and process risk components. This dominance of interaction effects persists 
across different operational states, although its magnitude increases significantly under abnormal and 
emergency conditions. The finding confirms that system level risk cannot be accurately characterized without 
explicitly accounting for human–process coupling mechanisms. 

4.19 Cross Scenario Consistency of Risk Drivers 

An analysis of risk drivers across different scenarios was conducted to assess the consistency of dominant 
contributors. Table 9 summarizes the frequency with which specific risk drivers appear among the top 
contributors across all high risk scenarios. 

Table 9. Frequency of Dominant Risk Drivers across High Risk Scenarios 

Risk Driver Frequency of Appearance (%) 

Human Response Delay 78 

Abnormal Process State 72 

Safety Barrier Degradation 65 

Incorrect Human Decision 59 

Maintenance Related Deviation 46 

The consistency analysis reveals that a small number of risk drivers repeatedly appear across a wide range of 
scenarios. Human response delay and abnormal process states are the most frequent contributors, indicating 
that time dependent human–process interactions play a central role in accident development. This consistency 
suggests that targeted interventions addressing these drivers could yield system wide risk reduction benefits. 

4.20 Comparison of Integrated and Fragmented Risk Assessments 

To illustrate the added value of the integrated modeling approach, a comparative analysis was conducted 
between integrated risk estimates and fragmented assessments considering human and process risks separately. 
Figure 9 compares total risk indices obtained from both approaches. 

 

Figure 9. Comparison of Integrated and Fragmented Risk Assessment Results 

The comparison shows that fragmented assessments consistently underestimate total system risk, 
particularly under abnormal and emergency conditions. In some cases, integrated risk estimates are more than 
40 percent higher than the sum of separately assessed human and process risks. This discrepancy highlights the 
critical contribution of interaction effects, which are inherently missed by fragmented approaches. 

4.21 Summary of Key Quantitative Findings 
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Overall, the results demonstrate that human–process interactions are a dominant driver of risk in high risk 
industrial systems. Human reliability varies significantly with operational context, and its interaction with 
process deviations leads to nonlinear risk escalation. Safety barriers provide substantial risk reduction, but their 
effectiveness is strongly influenced by human performance and timing. 

The quantitative analyses presented in this section provide a comprehensive and nuanced understanding of 
how risks emerge and propagate at the system level. These findings form a robust empirical basis for the 
conclusions and recommendations discussed in the following section. 

 

Conclusions 

This study presented a quantitative modeling framework for the integrated assessment of human safety risks 
and process safety risks in high risk industrial systems using operational data. The motivation for this research 
stemmed from the persistent occurrence of major industrial accidents despite the widespread use of 
conventional safety management systems and fragmented risk assessment approaches. By explicitly modeling 
the interactions between human performance and process conditions, the proposed framework addresses a 
critical gap in existing quantitative risk assessment practices. 

The results demonstrate that human–process interaction effects constitute a dominant component of system 
level risk, particularly under abnormal and emergency operating conditions. Traditional approaches that assess 
human reliability and process safety in isolation were shown to systematically underestimate total system risk. 
The integrated probabilistic structure developed in this study provides a more realistic representation of 
accident mechanisms by capturing conditional dependencies, escalation pathways, and nonlinear risk 
amplification effects. This represents a significant methodological advancement over static and 
compartmentalized risk models. 

A key contribution of this research lies in the systematic use of operational safety data to inform quantitative 
risk modeling. By deriving probability estimates and interaction relationships directly from observed 
operational events, the framework enhances the empirical grounding and credibility of quantitative risk 
assessments. The findings indicate that operational data, when properly structured and analyzed, can support 
reliable estimation of human error probabilities, process deviation likelihoods, and combined risk metrics 
suitable for industrial decision making. 

From a practical perspective, the results highlight that risk reduction strategies should prioritize scenarios 
characterized by strong human–process coupling rather than focusing exclusively on isolated technical failures 
or generic human error reduction. Improvements in human response timing, decision quality, and performance 
under abnormal conditions were shown to yield substantial reductions in integrated risk levels. At the same time, 
the analysis confirms that technical safety barriers remain essential but their effectiveness is strongly influenced 
by human performance variability. 

For industrial engineering and HSE practice, the proposed framework offers a structured and adaptable tool 
for risk prioritization, safety investment decision making, and evaluation of safety improvement measures. By 
integrating human and process safety considerations within a unified quantitative model, decision makers can 
better understand trade offs, identify dominant risk drivers, and allocate resources more effectively. 

Despite its contributions, this study has limitations related to data availability and the representation of 
organizational and cultural factors. Future research should focus on extending the framework to incorporate 
organizational influences, real time data streams, and dynamic updating mechanisms. Further validation across 
different industrial sectors would also enhance generalizability. Overall, the research provides a robust 
foundation for advancing quantitative, data driven risk management in high risk industrial systems. 
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